《2011年鋼結構作業守則》

屋宇署已成立技術委員會,其工作包括收集及考慮建築業界使用《2011年鋼結構作業守則》(《2011年守則》)的意見及回應。屋宇署因應技術委員會的建議,公布以下《2011年守則》的修訂。而《2011年守則》(2023年修訂版)亦已上載至屋宇署網站www.bd.gov.hk,當中包含以下修訂:

- (a) 附錄 $A^{1}-2016$ 年11月;
- (b) 附錄 $B^1 2021$ 年5月;及
- (c) 附錄 $C^1 2023$ 年3月。

建築事務監督 余寶美

檔 號 : BD GR/1-55/110(VII)

初 版: 2023年3月(助理署長/拓展(2))

¹ 暫只提供英文版本。

Amendments to Code of Practice for the Structural Use of Steel 2011 (November 2016)

Legends:

Revision/Addition

(3/2023)

Major amendments to the Code of Practice for the Structural Use of Steel 2011 in November 2016 included:

- updating the characteristic strength of reinforcement bar from 460 N/mm² to 500 N/mm² in accordance with the latest reinforcement bar standard CS2:2012 and the parameters of characteristic resistance of headed shear stud in different grades of concrete shown in Table 10.7;
- (b) including an additional Table 12.2e on strength reduction factors for hot rolled reinforcing bars at elevated temperatures and Chinese standard GB/T 700-2006 in the Acceptable Standard List in Annex Al.1.3;
- (c) explicating the need on second-order direct analysis for members in bending and sensitive to buckling in Equation 6.14 and the term of restrained beam mentioned in Clause 8.2 for consideration of lateral torsional buckling;
- (d) standardizing the two similar terms of "oscillation" and "vibration" to the latter to remove ambiguity and tally with that in the Chinese version; and
- (e) correcting the typo errors on expression of the reduction factor in Equation 9.23 and designation of buckling curves for S460 hot-finished structural hollow section in Table 8.7.

Amendments to the Code of Practice for Structural Use of Steel 2011 (November 2016)

Item	Clause/ Annex	Current Version		Amendments		Remarks				
1	Clause 1.1 – para. 9	Section 5 contains particular requirements and structural dynamics including serviceability crite buildings. The section also covers durability and p	ria for wind induced oscillation of tall	Section 5 contains particular requirements an structural dynamics including serviceability crit buildings. The section also covers durability a	teria for wind induced vibration of tall	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.				
2	Clause 1.2.5 – para. 3	Serviceability limit states correspond to limits be are no longer met. Examples are deflection, wir vibration and durability.		Serviceability limit states correspond to limits be are no longer met. Examples are deflection, w vibration and durability.						
3	Clause 2.2	Table 2.1 - Limit states		Table 2.1 - Limit states		The terms "Vibration" and "Wind induced				
	- Table 2.1	Ultimate limit states (ULS)	Serviceability limit states (SLS)	Ultimate limit states (ULS)	Serviceability limit states (SLS)	oscillation" stated in Table 2.1 are amended				
	14010 2.1	Strength (including general yielding, rupture, buckling and forming a mechanism)	Deflection	Strength (including general yielding, rupture, buckling and forming a mechanism)	Deflection	to "Human induced vibration" and "Wind				
		Stability against overturning, sliding, uplift and sway stability	Vibration	Stability against overturning, sliding, uplift and sway stability	Human induced vibration	induced vibration" respectively.				
		Fire resistance	Wind induced oscillation	Fire resistance	Wind induced vibration					
		Brittle fracture and fracture caused by fatigue	Durability	Brittle fracture and fracture caused by fatigue	Durability					
		Note:- For cold-formed steel, excessive local deformation is to t	e assessed under ultimate limit state.	Note:- For cold-formed steel, excessive local deformation is to	o be assessed under ultimate limit state.					
4	Clause 2.3.3 – para. 3	Situations where fatigue resistance needs to be co Where there are wind-induced oscillations fluctuations in wind loading need not be co Structural members that support heavy vib Members that support cranes as defined in Bridge structures, which will normally be d	due to aerodynamic instability. Normal insidered. ratory plant or machinery. n clause 13.7.	Situations where fatigue resistance needs to be Where there are wind-induced vibrat Normal fluctuations in wind loading nee Structural members that support heavy Members that support cranes as define Bridge structures, which will normally be	tions due to aerodynamic instability. ed not be considered. / vibratory plant or machinery. ed in clause 13.7.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.				
5	Clause 2.4 – para. 1	SERVICEABILITY LIMIT STATES (SLS) Serviceability limit states consider service require element under normally applied loads. Exampl vibration, wind induced oscillation and durability. The	es are deflection, human induced	SERVICEABILITY LIMIT STATES (SLS Serviceability limit states consider service requelement under normally applied loads. Exan vibration, wind induced vibration and durability.	uirements for a structure or structural nples are deflection, human induced					

6	Clause 5.2 - Table 5.1	Note: Exceedance of the above limit is not acceptable unless a full justification is provided. Precamber deflection can be deduced in the deflection calculation. Ponding should nevertheless be avoided in all cases. Long span structures should be checked against vibration and oscillation.	Note: Exceedance of the above limit is not acceptable unless a full justification is provided. Precamber deflection can be deduced in the deflection calculation. Ponding should nevertheless be avoided in all cases. Long span structures should be checked against vibration.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency hence the word "oscillation" is deleted.
7	Clause 5.3	WIND-INDUCED OSCILLATION Vibration and oscillation of a structure should be limited to avoid discomfort to users and damage to contents. For special structures, including long-span bridges, large stadium roofs and chimneys, wind tunnel model tests are recommended for their wind resistant design to meet serviceability limits.	WIND-INDUCED VIBRATION Vibration of a structure should be limited to avoid discomfort to users and damage to contents. For special structures, including long-span bridges, large stadium roofs and chimneys, wind tunnel model tests are recommended for their wind resistant design to meet serviceability limits.	
8	Clause 5.3.2	Serviceability limit state The serviceability limit states on oscillation, deflection and acceleration should be checked to ensure serviceable condition for the structure.	Serviceability limit state The serviceability limit states on vibration, deflection and acceleration should be checked to ensure serviceable condition for the structure.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.
9	Clause 5.3.3.1	Natural frequencies Structural analysis programmes should be used to determine the natural frequencies of vibration of buildings and structures to mitigate excessive horizontal oscillation and vertical vibration. Empirical formulae can also be used for approximated vibration analysis of typical and regular buildings.	Natural frequencies Structural analysis programmes should be used to determine the natural frequencies of vibration of buildings and structures to mitigate excessive horizontal and vertical vibration. Empirical formulae can also be used for approximated vibration analysis of typical and regular buildings.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency hence the word "oscillation" is deleted.
10	Clause 5.3.5	Serviceability criteria for communication and broadcasting towers Communication and broadcasting services demand minimal disruption to transmission. The serviceability limits for communication and broadcasting towers are selected to meet the performance specifications of antennae and other transmission devices to be mounted on those towers. Excessive oscillation and vibration of towers should be avoided. For design, reference should be made to specialist literature.	Serviceability criteria for communication and broadcasting towers Communication and broadcasting services demand minimal disruption to transmission. The serviceability limits for communication and broadcasting towers are selected to meet the performance specifications of antennae and other transmission devices to be mounted on those towers. Excessive vibration of towers should be avoided. For design, reference should be made to specialist literature.	
11	Clause 6.8.3 – equation 6.14	Member lateral-torsional and torsional buckling checks are carried out separately or alternatively by replacing M_{cx} in the above equation by the buckling resistance moment M_b in Equations 8.20 to 8.22. If moment equivalent factor m_{LT} is less than 1, both Equation 6.12 or 6.13 and Equation 6.14 are required for member resistance check. $ \frac{F_c}{A_g P_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} = \frac{F_c}{A_g P_y} + \frac{m_{LT} [\overline{M}_X + F_c(\Delta_X + \delta_X)]}{M_b} + \frac{m_y [\overline{M}_y + F_c(\Delta_y + \delta_y)]}{M_{cy}} \le 1 $ (6.14) The equivalent uniform moment factor m_{LT} for beams and the moment equivalent factor m_y for flexural buckling can be referred to Tables 8.4 a & b and Table 8.9.	Member lateral-torsional and torsional buckling checks are carried out separately or alternatively by replacing $M_{\rm cx}$ in the above equation by the buckling resistance moment $M_{\rm b}$ in Equations 8.20 to 8.22. If moment equivalent factor $m_{\rm LT}$ is less than 1, both Equation 6.12 or 6.13 and Equation 6.14 are required for member resistance check. $ \frac{F_c}{A_g \rho_y} + \frac{M_x}{M_{\rm cx}} + \frac{M_y}{M_{\rm cy}} = \frac{F_c}{A_g \rho_y} + \frac{m_{LT} [\overline{M}_x + F_c (\Delta_x + \delta_x)]}{M_b} + \frac{m_y [\overline{M}_y + F_c (\Delta_y + \delta_y)]}{M_{\rm cy}} \le 1 \qquad (6.14) $ The equivalent uniform moment factor $m_{\rm LT}$ for beams and the moment equivalent factor m_y for flexural buckling can be referred to Tables 8.4 a & b and Table 8.9. For members in bending and sensitive to buckling, imperfection on both axes should be considered if effective length has reduction in capacity about buckling in both axes.	For second-order direct analysis, imperfections in both axes should be considered for members in bending about strong axis and sensitive to lateral torsional buckling.

12	Clause 8.2 – para.1	RESTRAINED BEAMS Restrained beams refer to beams provided with full la and with full torsional restraint at their ends. In such should not occur before plastic moment capacity.				RESTRAINED BEAMS Restrained beams refer to beams provided with full and with nominal torsional restraint at their ends. buckling should not occur before plastic moment capa	Torsional restraint requirement of beams at the ends to prevent lateral torsional buckling is revised from full restraint to nominal restraint			
1.2	- CI	Table 8.7 - Designation of buckling curves for differ	rent section typ	es		Table 8.7 - Designation of buckling curves for differ	ent section type	s		
13	Clause 8.7.6 -	Type of section	Maximum thickness		is of kling	Type of section	Maximum thickness		is of kling	Typo error on designation of buckling curves for the grade of hot-finished structural hollow
			(see note1)	x-x	у-у		(see note1)	X-X	у-у	_
	Table 8.7	Hot-finished structural hollow sections with steel grade > S460 or hot-finished seamless structural hollow sections		a ₀)	a ₀)	Hot-finished structural hollow sections with steel grade > S460 or hot-finished seamless structural hollow sections		a ₀)	a ₀)	section less than or equal to S460 is rectified.
		Hot-finished structural hollow section < grade S460		a)	a)	Hot-finished structural hollow section ≤grade S460		a)	a)	
		Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)	Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)	
		Rolled I-section	≤ 40 mm > 40 mm	a) b)	b)	Rolled I-section	≤ 40 mm > 40 mm	a) b)	b) c)	
		Rolled H-section	≤ 40 mm > 40 mm	b) c)	c) d)	Rolled H-section	≤ 40 mm > 40 mm	b)	c) d)	
		Welded I- or H-section (see note 2)	≤ 40 mm > 40 mm	b) b)	c) d)	Welded I- or H-section (see note 2)	≤ 40 mm > 40 mm	b)	c) d)	
		Rolled I-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	a) b)	b)	Rolled I-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4) Rolled H-section with welded flange cover plates	≤ 40 mm > 40 mm	a) b)	b) c)	
		Rolled H-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) c)	c) d)	with 0.25 < U/B < 0.80 as shown in Figure 8.4) Rolled I or H-section with welded flange cover plates	≤ 40 mm > 40 mm ≤ 40 mm	b) c)	c) d)	
		Rolled I or H-section with welded flange cover plates with U/B ≥ 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) c)	a) b)	with U/B ≥ 0.80 as shown in Figure 8.4) Rolled I or H-section with welded flange cover plates	> 40 mm > 40 mm	c) b)	a) b) c)	
		Rolled I or H-section with welded flange cover plates with U/B ≤ 0.25 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) b)	c) d)	with U/B ≤ 0.25 as shown in Figure 8.4)	> 40 mm > 40 mm	b) b)	d) b)	
		Welded box section (see note 3)	≤ 40 mm > 40 mm	b) c)	b)	Welded box section (see note 3)	> 40 mm	c)	c)	
		Round, square or flat bar	≤ 40 mm	b)	b)	Round, square or flat bar	≤ 40 mm > 40 mm	b) c)	b) c)	
		Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections	> 40 mm	c) Any :	c) axis: c)	Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections NOTE:		Any	axis: c)	
	NOTE: 1. For thickness between 40mm and 50mm the value of p _c may be taken as the average of the values for thicknesses up to 40mm and over 40mm for the relevant value of p _c . 2. For welded to r1-sections with their flanges thermally cut by maxine without subsequent edge grinding or machining, for buckling about the y-y axis, strut curve b) may be used for flanges up to 40mm thick and strut curve b; for flanges over 40mm thick. 3. The category "welded box section" includes any box section fabricated from plates or rolled sections, provided that all of the longitudinal welds are near the comes of the cross-section. Box sections with longitudinal stiffeners are NOT included in this category. 4. Use of buckling curves based on other recognized design codes allowing for variation between load and material factors and calibrated against Tables 8.8(a ₀), (a) to (h) is acceptable. See also footnote under Table 8.8.					1. For thickness between 40mm and 50mm the value of p _c may thicknesses up to 40mm and over 40mm for the relevant value c 2. For weided of rr-1-sections with their flanges thermally cut by m machining, for buckling about the y-y axis, strut curve b) may be curve c) for flanges over 40mm thick. 3. The category "welded box section" includes any box section provided that all of the longitudinal welds are near the come longitudinal stiffeners are NOT included in this category. 4. Use of buckling curves based on other recognized design cod material factors and calibrated against Tables 8.8(a ₀), (a) to 1 Table 8.8.	of py. achine without subset used for flanges up to fabricated from plat ers of the cross-secti	quent edge o 40mm thin es or rolle on. Box se ion betwee	grinding or k and strut d sections, ctions with	

14	Clause 9.3.6.1.6 – equation 9.23	Bolts through packing When a bolt passes through packing with thickness t_{po} greater than one-third of the nominal diameter d , its shear capacity P_s should be reduced by multiplying a reduction factor β_p obtained from: $\beta_p = \left(\frac{9d}{8d+3t_{po}}\right) \le 10 \tag{9.23}$ For double shear connections with packing on both sides of connecting member, t_{po} should have the same thickness; otherwise, the thicker t_{po} should be used. This provision does not apply to preloaded bolt (friction-type) connections when working in friction, but does apply when such bolts are designed to slip into bearing.				Bolts through packing When a bolt passes through packing with thickness t_{pa} greater than one-third of the nominal diameter d , its shear capacity P_z should be reduced by multiplying a reduction factor β_p obtained from: $\beta_p = \left(\frac{9d}{8d+3t_{pa}}\right) \leq \frac{1.0}{1.0} \tag{9.23}$ For double shear connections with packing on both sides of connecting member, t_{pa} should have the same thickness; otherwise, the thicker t_{pa} should be used. This provision does not apply to preloaded bolt (friction-type) connections when working in friction, but does apply when such bolts are designed to slip into bearing.					J 1	error on the upper bound of equation n calculating the reduction factor β_p is ied.										
15	Clause 10.1.3	Reinforcement Reinforcement shall or larger than 460 N/mm ² that of structural steel s Different types of reinfo	² . The e sections	lastic mod	dulus sha	ıll be tak	en as 20	5 kN/mr	ń², i.e. sa		Reinforcement Reinforcement so larger than 500 N that of structural Different types of	nall comply of mm². The steel section	ns.							not be ame as	bar is	characteristic strength of reinforcement changed to 500N/mm² to meet with the reinforcement bar standard CS2:2012
16	Clause 10.3.2.2 - Table 10.7	Table 10.7 - Characteristic resistance P_k of headed shear studs in normal weight concrete Characteristic resistance of headed shear studs P_k (k/N) Dimensions of headed shear Cube compressive strength of concrete, f_{cu} (N/mm²)						Table 10.7 - Characteristic resistance P_k of headed shear studs in normal weight concrete Characteristic resistance of headed shear studs P_k (kN) Dimensions of headed shear studes of Cube compressive strength of concrete, f_{cu} (N/mm 2) Nominal shank Minimum				C	deleted.									
			bilded c2 (c2 (c3 (c4	1.4 126.9 9.9 102.4 7.1 76.3 7.5 54.1 strength of con	141.7 114.3 85.2 60.5	155.9 16 125.8 13 93.8 10 66.5 7	36.8 136 02.1 102 72.4 72	7 176.7 8 136.8 1 102.1 4 72.4	7 176.7 3 136.8 1 102.1 4 72.4		diameter (mm) 25 22 19 16 Note: F	as-welded height (mm) 100 88 76 64 for cube compre		gth of con-	114.3 85.3 60.5 crete greate	125.8 93.8 66.5 er than 60	136.8 102.1 72.4 N/mm², the	136.8 102.1 72.4	C55 176.7 136.8 102.1 72.4 f P _k shou	136.8 102.1 72.4	(c) T	25mm shank diameter shear stud is amended. The corresponding characteristic resistances of headed shear stud for various concrete cube strengths are revised.

17	Clause	DESIGN PRINCIPLES	DESIGN PRINCIPLES	The design strength of reinforcement bar is
	12.1	This section aims to provide guidance on fire resistant design in steel and composite structures which deals primarily with minimising the risk of structural collapse and restricting the spread of fire through the structure. The fire resistant design method is applicable to steel and composite structures with the following materials: Structural steel: Hot rolled steel sections with design strengths equal to or less than 460 N/mm². Cold formed steel sections with design strengths equal to or less than 550 N/mm². Concrete: Normal weight concrete with cube strengths equal to or less than 60 N/mm². Reinforcement: Cold worked reinforcing bars with design strengths equal to or less than 460 N/mm². For steel materials other than those listed above, refer to specialist design recommendations. Alternatively, passive fire protection method should be adopted.	This section aims to provide guidance on fire resistant design in steel and composite structures which deals primarily with minimising the risk of structural collapse and restricting the spread of fire through the structure. The fire resistant design method is applicable to steel and composite structures with the following materials: Structural steel: Hot rolled steel sections with design strengths equal to or less than 460 N/mm². Cold formed steel sections with design strengths equal to or less than 550 N/mm². Concrete: Normal weight concrete with cube strengths equal to or less than 60 N/mm². Reinforcement: Cold worked reinforcing bars with design strengths equal to or less than 500 N/mm². For steel materials other than those listed above, refer to specialist design recommendations. Alternatively, passive fire protection method should be adopted.	changed to 500N/mm² to meet the latest reinforcement bar standard CS2:2012
18	Clause 12.1.4 - Table 12.2e (added)	-	Table 12.2e - Strength reduction factors for hot rolled reinforcing bars at elevated temperatures Temperature (°C) Strength reduction factors 20 °C 1.00 100 °C 1.00 300 °C 1.00 400 °C 1.00 500 °C 0.78 600 °C 0.47 700 °C 0.23 800 °C 0.11 900 °C 0.06 1000 °C 0.04 1100 °C 0.02 1200 °C 0.00	A table extracted from BS EN 1992-1-2:2004 showing the strength reduction factors for hot rolled bars at elevated temperatures is added.
19	Clause 13.2.5	Serviceability issues The following serviceability issues shall be addressed for towers and masts: (a) Wind induced oscillations of antennas, structural elements and cables. (b) Access for maintenance of steelwork can be very difficult, therefore a high quality protective system should be specified. (c) Required stiffness for purpose (e.g. microwave alignment). (d) Access facilities for routine maintenance and inspection shall be designed to take into account of the availability and likely competence of staff trained to climb such structures but should normally include ladders fitted with a fall arrest system and regular platforms to rest and safely place work equipment.	Serviceability issues The following serviceability issues shall be addressed for towers and masts: (a) Wind induced vibrations of antennas, structural elements and cables. (b) Access for maintenance of steelwork can be very difficult, therefore a high quality protective system should be specified. (c) Required stiffness for purpose (e.g. microwave alignment). (d) Access facilities for routine maintenance and inspection shall be designed to take into account of the availability and likely competence of staff trained to climb such structures but should normally include ladders fitted with a fall arrest system and regular platforms to rest and safely place work equipment.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.

20	Clause 13.2.6	Design issues for steel chimneys In addition to the guidance given in clauses 13.2.1 to 13.2.5, special attention should given to the following in the design of steel chimneys and flues:	Design issues for steel chimneys In addition to the guidance given in clauses 13.2.1 to 13.2.5, special attention should be given to the following in the design of steel chimneys and flues:	The terms "oscillation" and "vibration" are collectively read as "vibration" for
		 (a) Wind-excited oscillations should be considered and analyzed by aerodynar methods. For circular chimneys the simplified method in clause 13.2.8 may used. (b) Design should be in accordance with the appropriate provisions of the Code a in the acceptable references in Annex A2.1. (c) To control buckling in the case of a thin walled chimney with effective height diameter ratio of less than 21 and diameter to thickness ratio of less than 130, the ultimate compressive stresses in the chimney structure arising from the three principal load combinations shall be limited to a value calculated in accordan with Table 12.2 of clause 12.1.4 which allows for reduced steel strength elevated temperatures. If this value exceeds 140 N/mm², then a value of 1 N/mm² shall be used. The value should be reduced further for higher asperations. 	methods. For circular chimneys the simplified method in clause 13.2.8 may be used. (b) Design should be in accordance with the appropriate provisions of the Code and in the acceptable references in Annex A2.1. (c) To control buckling in the case of a thin walled chimney with effective height to diameter ratio of less than 21 and diameter to thickness ratio of less than 130, the ultimate compressive stresses in the chimney structure arising from the three principal load combinations shall be limited to a value calculated in accordance with Table 12.2 of clause 12.1.4 which allows for reduced steel strength at elevated temperatures. If this value expected 140 N/mm² then a	consistency.

Wind-excited oscillations of circular chimneys 2.1 Clause Flexible slender structures are subject to oscillations caused by cross wind and along wind action. Structures with a circular cross section, such as chimneys, oscillate more 13.2.8 strongly across than along wind. The following simplified approach may be used for across wind oscillation, see also The Strouhal critical velocity V_{crit} in metres per second for the chimney is to be $V_{crit} = 5 D_t f$ (13.1)where f (in Hz) is the natural frequency of the chimney on its foundations. This may be calculated analytically or from the following approximate formula for the case of a regular cone: (13.2)is the height of chimney (in m) is the diameter at top (in m) is the diameter at bottom (in m) is the mass per metre height at top of structural shell including lining or encasing, if any (in kg) is the mass per meter height at top of structural shell excluding lining If Vort exceeds the design wind velocity in metres per second given by the following formula $V = 40.4 (a)^{0.5}$ where q is the design wind pressure in kN/m², severe oscillation is unlikely and no further calculation is required. If V_{crit} is less than the design wind velocity, the tendency to oscillate C may be estimated by the following empirical formula: $C = 0.6 + K \left[\frac{10 D_t^2}{W} + \frac{1.5\Delta}{D_t} \right]$ is the calculated deflection (in m) at the top of the chimney for unit distributed load of 1 kPa is 3.5 for all welded construction, 3.0 for welded with flanged and bolted joints and 2.5 for bolted and riveted or all riveted. If C is less than 1.0, severe oscillation is unlikely. If C is between 1.0 and 1.3 the design wind pressure for the chimney should be increased by a factor C2. If C is larger than 1.3 stabilizers or dampers should be provided to control the oscillations.

Wind-excited vibrations of circular chimneys

Flexible slender structures are subject to vibrations caused by cross wind and along wind action. Structures with a circular cross section, such as chimneys, oscillate more strongly across than along wind.

The following simplified approach may be used for across wind $\frac{\text{vibration}}{\text{vibration}}$, see also clause 5.3:

The Strouhal critical velocity V_{crit} in metres per second for the chimney is to be determined by:

$$V_{crit} = 5 D_t f ag{13.1}$$

where f (in Hz) is the natural frequency of the chimney on its foundations. This may be calculated analytically or from the following approximate formula for the case of a regular cone:

$$f = \frac{500(3D_b - D_t \left[\frac{W_a}{W}\right]^{\frac{1}{2}}}{h^2}$$
(13.2)

and

is the height of chimney (in m)

D_t is the diameter at top (in m)

D_b is the diameter at bottom (in m)

W is the mass per metre height at top of structural shell including lining or encasing, if any (in kg)

 W_{ϵ} is the mass per meter height at top of structural shell

excluding lining
(in kg)

(b) If V_{crit} exceeds the design wind velocity in metres per second given by the following formula

$$V = 40.4 (a)^{0.5}$$
(13.3)

where q is the design wind pressure in kN/m², severe vibration is unlikely and no further calculation is required.

(c) If V_{crit} is less than the design wind velocity, the tendency to oscillate C may be estimated by the following empirical formula:

$$C = 0.6 + K \left[\frac{10 D_t^2}{W} + \frac{1.5\Delta}{D_t} \right]$$
 (13.4)

where

is the calculated deflection (in m) at the top of the chimney for unit distributed load of 1 kPa.

K is 3.5 for all welded construction, 3.0 for welded with flanged and bolted joints and 2.5 for bolted and riveted or all riveted.

(d) If C is less than 1.0, severe vibration is unlikely. If C is between 1.0 and 1.3 the design wind pressure for the chimney should be increased by a factor C*. If C is larger than 1.3 stabilizers or dampers should be provided to control the vibrations.

The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.

22	Clause 13.5.5	Serviceability issues The following serviceability issues shall be addressed for long span structures: (a) Vibration from crowds. Refer to section 5 of the Code. (b) Wind induced oscillations of roof elements and cables. Fatigue may need to be checked. (c) Access for maintenance of roof steelwork can be very difficult therefore a high quality protective system should be specified for the steelwork. (d) Deflection limits for long span trusses under live and wind loads depend on circumstances. A value of span/360 may be used for preliminary design in the absence of other requirements. Significantly smaller deflection limits will be required for applications such as: aircraft hanger doors and stadia opening roofs.	Serviceability issues The following serviceability issues shall be addressed for long span structures: (a) Vibration from crowds. Refer to section 5 of the Code. (b) Wind induced vibrations of roof elements and cables. Fatigue may need to be checked. (c) Access for maintenance of roof steelwork can be very difficult therefore a high quality protective system should be specified for the steelwork. (d) Deflection limits for long span trusses under live and wind loads depend on circumstances. A value of span/360 may be used for preliminary design in the absence of other requirements. Significantly smaller deflection limits will be required for applications such as: aircraft hanger doors and stadia opening roofs.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.
23	Paragraph 13.6.4	Vibration and oscillation Pedestrians can be adversely affected by the dynamic behaviour of footbridges. In addition to the criteria specified in section 5 on Human-Induced Vibration, the natural frequency of a footbridge shall not be less than 3 Hz. If the natural frequency of a footbridge is less than 3 Hz which may lead to unpleasant vibration, the maximum vertical acceleration, a, shall be limited to an appropriate value as given in recognized design guidelines in Annex A2.3 in order to avoid unpleasant vibration.	Vibration Pedestrians can be adversely affected by the dynamic behaviour of footbridges. In addition to the criteria specified in section 5 on Human-Induced Vibration, the natural frequency of a footbridge shall not be less than 3 Hz. If the natural frequency of a footbridge is less than 3 Hz which may lead to unpleasant vibration, the maximum vertical acceleration, a, shall be limited to an appropriate value as given in recognized design guidelines in Annex A2.3 in order to avoid unpleasant vibration.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency hence the word "oscillation" is deleted.
24	Annex A1.1.3	Chinese standards GB/T 247 - 1997 Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel GB/T 1591 - 2008 GB/T 5313 - 1985 Through thickness properties of steel plates YB 4104 - 2000 GB 50017 - 2003 Code for design of steel structures Code for acceptance of construction quality of steel structures	Chinese standards GB/T 247 - 1997 Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel GB/T 709 - 2006 GB/T 709 - 2006 GB/T 1591 - 2008 GB/T 5313 - 1985 YB 4104 - 2000 GB 50017 - 2003 GB 50205 - 2001 Carbon structural steel Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel High strength structural steel plates Steel plate for high rise building structure Code for design of steel structures Code for acceptance of construction quality of steel structures	The Chinese standard GB/T 700-2006 is added in the Acceptable Standard List.

Amendments to Code of Practice for the Structural Use of Steel 2011 (May 2021)

Legends:

(3/2023)

Major amendments to the Code of Practice for the Structural Use of Steel 2011 in May 2021 included:

- (a) clause 1.5 addition of a symbol λ_{eff} corresponding to the amendments to clause 8.7.9;
- (b) clause 3.1.2 clarification on the definition of yield strength;
- (c) Table 3.9 addition of BS EN 10268 to supersede the withdrawn BS 1449-1-1.5 & 1.11;
- (d) 3rd paragraph of clause 8.7.9 revision of the formulas defining the effective slenderness ratios about different minor axes;
- (e) clause 11.7.5(iii) deletion of the requirement to submit Welding Procedure Specification prior to the commencement and carrying out of welding works in cold-formed hollow sections;
- (f) Table 11.5 elaboration of the conditions for welding cold-formed areas and adjacent materials;
- (g) clause Al of Annex A addition of a criterion for using the latest version of the standards listed in Annex A;
- (h) clause Al.1.5 of Annex A addition of BS EN 10147:2000; and
- (i) clause Al.7.5 of Annex A addition of BS EN 10268:2006.

Amendments to the Code of Practice for the Structural Use of Steel 2011 (May 2021)

Item	Current version Amendments
1. Clause 1.5 ¹	λ_{cr} Elastic critical load factor λ_{cr} Elastic critical load factor
	λ_{L0} Limiting equivalent slenderness (lateral-torsional λ_{eff} Effective slenderness ratio
	buckling) λ_{L0} Limiting equivalent slenderness (lateral-torsional
	buckling)
2. Clause 3.1.2 ²	3.1.2 Design strength for normal strength steels 3.1.2 Design strength for normal strength steels
	The design strength, p_y , for steel is given by: The design strength, p_y , for steel is given by:
	$p_y = \frac{Y_S}{\gamma_{m1}}$ but not greater than $\frac{U_S}{\gamma_{m2}}$ $p_y = \frac{Y_S}{\gamma_{m1}}$ but not greater than $\frac{U_S}{\gamma_{m2}}$
	where where
	Y_s is the yield strength Y_s the yield strength is defined as:
	which is defined as the upper yield strength, (a) the upper yield strength, R _{eH} , the stres
	R _{eH} , the stress at the initiation of yielding at the initiation of yielding for stee
	for steel materials with clearly defined materials with clearly defined yiel
	yield point; or 0.2% proof stress, $R_{\rm p \ 0.2}$, or point; or
	the stress at 0.5% total elongation, $R_{t0.5}$ for (b) if the yield point cannot be clearly
	steel materials with no clearly defined yield defined, then the 0.2% proof stress
	point, whichever is smaller. In case of $R_{\rm p~0.2}$, or the stress at 0.5% total
	dispute, the 0.2% proof stress, $R_{\rm p~0.2}$, shall elongation, $R_{\rm t~0.5}$ for steel materials
	be adopted. whichever is smaller.

Addition of a symbol λ_{eff} corresponding to the amendments to clause 8.7.9. Clarification on the definition of yield strength.

Item		Current vers	ion			Amendmei	nts		
					(f dispute, th	e 0.2% proof	
3. Table 3.9 ³		nd ultimate I in accor	_	Table 3.9 - Yield and ultimate strengths for steels supplied in accordance with various national standards					
	Type of steel	Grade	Yield strength Ys (N/mm²)	Tensile strength Us (N/mm²)	Type of steel	strength Ys		Tensile strength Us (N/mm²)	
	British standard: BS EN 10025 Hot rolled steel sheet of structural quality	S235 S275 S355	235 275 355	360 430 510	British standard: BS EN 10025 Hot rolled steel sheet of structural quality	S235 S275 S355	235 275 355	360 430 510	
	British standard: BS EN 10147 Continuous hot dip zinc coated carbon steel sheet of structural quality	S220 G S250 G S280 G S320 G S350 G	220 250 280 320 350	300 330 360 390 420	British standard: BS EN 10147 Continuous hot dip zinc coated carbon steel sheet of structural quality	S220 G S250 G S280 G S320 G S350 G	220 250 280 320 350	300 330 360 390 420	

³ Addition of BS EN 10268 to supersede the withdrawn BS 1449-1-1.5 & 1.11.

Item		Current versi	on			Amendmen	ts	
	British standard:	S315 MC	315	390	British standard:	S315 MC	315	390
	BS EN 10149-	S355 MC	355	430	BS EN 10149-	S355 MC	355	430
	2 & 3	S420 MC	420	480	2 & 3	S420 MC	420	480
	High yield strength				High yield strength			
	steels for cold	S260 NC	260	370	steels for cold	S260 NC	260	370
	forming	S315 NC	315	430	forming	S315 NC	315	430
		S355 NC	355	470		S355 NC	355	470
		S420 NC	420	530		S420 NC	420	530
	British standard:	34/20	200	340	British standard:	34/20	200	340
	BS 1449-1-	37/23	230	370	BS EN 10268	37/23	230	370
	1.5 & 1.11	43/25	250	430	Cold-rolled steel	43/25	250	430
	Cold rolled steel	50/35	350	500	flat products with high yield strength	50/35	350	500
	sheet based on				for cold forming -			
	minimum strength	40/30	300	400	Technical delivery conditions	40/30	300	400
		43/35	350	430	Conditions	43/35	350	430
		40F30	300	400		40F30	300	400
		43F35	350	430		43F35	350	430
	Australia standard:	G250	250	320	Australia standard:	G250	250	320
	AS 1397	G300	300	340	AS 1397	G300	300	340
	Steel sheet and	G350	350	420	Steel sheet and	G350	350	420
	strip	G450	450	480	strip	G450	450	480
		G500	500	520		G500	500	520
		G550	550	550		G550	550	550

Item	C	urrent vers	ion		Amendmer	nts				
	Chinese standard:	Q235	205	-	Chinese standard:	Q235	205	-		
	GB 50018	Q345	300	-	GB 50018	Q345	300	-		
	Technical code of				Technical code of					
	cold-formed thin-				cold-formed thin-					
	wall steel structures				wall steel structures					
4. 3 rd paragraph of	For web members, but	ckling about	principal as	xes and axes	For web members, but	ickling abou	t principal a	xes and axes		
Clause 8.7.9 ⁴	parallel to the legs	should be o	considered.	For angle	parallel to the legs should be considered. For angle sections					
	sections connected by	two or mo	re bolts, the	slenderness	connected by two or m	· ·	e slendernes	s ratio should		
	ratio should be calcu	lated from	the larger o	of the actual	be calculated from the	e following:				
	member length and the	e following:								
	For buckling about mi	nor v-v axis,			For buckling about v-v axis,					
	$\lambda = 0.35 + 0.7 \lambda_{v} / (93.9)$	9ε)			$\lambda_{eff,v} = 0.35 \times 85.8\varepsilon + 0.7\lambda_v$ or λ_v whichever is larger.					
	For buckling about x-x	axis,			For buckling about x-x	axis,				
	$\lambda = 0.5 + 0.7\lambda_x / (93.98)$	ε)		(8.76)	$\lambda_{eff,x} = 0.5 \times 85.8\varepsilon + 0$	$0.7\lambda_x$ or λ_x w	hichever is la	orger. (8.76)		
	For buckling about y-y	axis,			For buckling about y-y	axis,				
	$\lambda = 0.5 + 0.7\lambda_y / (93.98)$	$\epsilon)$			$\lambda_{eff,y} = 0.5 \times 85.8\varepsilon + 0$	$0.7\lambda_y$ or λ_y w	hichever is la	arger.		
	in which $\varepsilon = \sqrt{\frac{275}{\rho_y}}$	and λ is the	ne effective	slenderness	in which $\varepsilon = \sqrt{\frac{275}{\rho_y}}$	and λ_{eff} is	the effective	e slenderness		
	ratio. λ_v , λ_x and λ_y a	re respective	ly the slend	erness ratios	ratio. λ_v , λ_x and λ_y a	are respectiv	ely the slend	lerness ratios		

⁴ Revision of the formulas defining the effective slenderness ratios about different minor axes.

Item		Current version		Amendments
	about minor v	v-axis and the x- and y-axes parallel to the two	about the sections	ne minor v-axis, and the x- and y-axes of the angle
5. Clause 11.7.5(iii) ⁵	Weld eithe	ding at cold-formed zones ding may be carried out within a length 5t er side of a cold-formed area, provided that one the following conditions is satisfied: the cold formed areas are normalized after cold forming but before welding; the internal radius-to-thickness r/t ratio satisfies the relevant value given in Table 11.5; or the Responsible Engineer shall submit a Welding Procedure Specification (WPS) as stipulated in clause 14.3.3 for the approval of the Building Authority prior to the commencement and carrying out of welding works in cold-formed hollow sections.	11.7.5	 Welding at cold-formed zones Welding may be carried out within a length 5t either side of a cold-formed area, provided that one of the following conditions is satisfied: (a) the cold-formed areas are normalized after cold forming but before welding; (b) the internal radius-to-thickness r/t ratio satisfies the relevant value given in Table 11.5; or (c) the welding procedure shall fulfill the Welding Procedure Specification (WPS) as stipulated in clause 14.3.3

⁵ Deletion of the requirement to submit Welding Procedure Specification prior to the commencement and carrying out of welding works in cold-formed hollow sections.

Item	Current version						Amendme	ents		
6. Table 11.5 ⁶	Table 11.5 Conditions for welding cold-formed areas and adjacent					Table 11.5	Conditio	ns for welding c	old-formed are	as and adjacent
		materials					material	s		
	Minimum	Strain	Maxir	Maximum thickness (mm)			Strain	Maxir	num thickness (n	nm)
	internal	due to	Gene	Generally Fully killed		internal	due to	Gene	rally	Fully killed
	radius/	cold	Predominantly	Where	Aluminium-	radius/	cold	Predominantly	Where	Aluminium-
	thickness	forming	static loading	fatigue	killed steel	thickness	forming	static loading	fatigue	killed steel
	(r/t) ratio	(%)		predominates	(AL ≥ 0.02	(r/t) ratio	(%)		predominates	(AL ≥ 0.02
					%)					%)
	≥ 3.0	≤ 14	22	12	22	≥ 3.0	≤ 14	22	12	22
	≥ 2.0	≤ 20	12	10	12	≥ 2.0	≤ 20	12	10	12
	≥ 1.5	≤ 25	8	8	10	≥ 1.5	≤ 25	8	8	10
	,			•			•		•	<u>. </u>

⁶ Elaboration of the conditions for welding cold-formed areas and adjacent materials.

Item	Current version							Amendm	ents	
	≥ 1.0	≤ 33	4	4	6	≥ 1.0	≤ 33	4	4	6
		5 t	5t	Y			5t	5t >	Y	
						NOTE: Colo	l-formed ho	llow sections acco	ording to BS EN 1	0219 which do
									can be assumed	
									not exceeding 12 2H, MH, MLH, 1	
									fy $C \le 0.18\%$, $P \le 0.18\%$	
							can be sh		within a distance	

Item		Curre	ent version		Am	nendments	
7. Clause A1 of	A1	ACCEPTABLE ST	ΓANDARDS AND	A1	ACCEPTABLE S	TANDARDS AND	
Annex A ⁷		REFERENCES			REFERENCES		
		This annex contains the standards considered			This annex contains the standards considered		
		acceptable to the	Building Authority to be used		acceptable to the	Building Authority to be used	
		together with the Co	ode. Where it is intended to use		together with the C	ode. Where it is intended to use	
		other standards or t	echnical references it should be		other standards or	r technical references <mark>, or latest</mark>	
		demonstrated that t	hey can achieve a performance		version of the stand	dards given in Annex A, it should	
		equivalent to the acc	ceptable standards as specified in		be demonstrated that	at they can achieve a performance	
		the Code.			equivalent to the acceptable standards as specified i		
					the Code.		
8. Clause A1.1.5	A1.1.5	UK and Europea	n standards	A1.1.5	UK and Europea	n standards	
of Annex A ⁸		BS EN 10025:	Hot rolled products of non-		BS EN 10025:	Hot rolled products of non-	
		2004	alloy structural steels -		2004	alloy structural steels -	
			Technical delivery			Technical delivery	
			conditions.			conditions.	
		BS EN 10164:	Steel products with		BS EN 10164:	Steel products with	
		2004	improved deformation		2004	improved deformation	
			properties perpendicular to			properties perpendicular to	
			the surface of the product -			the surface of the product -	
			Technical delivery			Technical delivery	
			conditions.			conditions.	
		BS EN 10210-1:	Hot finished structural		BS EN 10210-1:	Hot finished structural	
		2006	hollow sections of non-alloy		2006	hollow sections of non-alloy	

Addition of a criterion for using the latest version of the standards listed in Annex A.
 Addition of BS EN 10147:2000.

Item	Curre	nt version		Am	endments
		and fine grain structural steels. Part 1: Technical delivery requirements.			and fine grain structural steels. Part 1: Technical delivery requirements.
	BS EN 10248-1: 1996	Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10248-1: 1996 BS EN 10147:	Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions Continuous hot dip zinc
				2000	coated carbon steel sheet of structural quality
9. Clause A1.7.5	A1.7.5 UK, European and ISO standards		A1.7.5	7.5 UK, European and ISO standards	
of Annex A ⁹	BS 5950-7: 1992 BS EN 10149-1:	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections Specification for hot-rolled		BS 5950-7: 1992 BS EN 10149-1:	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections Specification for hot-rolled
	1996	flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions		1996	flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions
	BS EN 10149-2: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 2: Delivery		BS EN 10149-2: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 2: Delivery

⁹ Addition of BS EN 10268:2006.

Item	Curre	ent version	Amendments			
		conditions for thermomechanically rolled steels		conditions for thermomechanically rolled steels		
	BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels	BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels		
	BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements	BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements		
	BS EN 10249-1: 1996	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions	BS EN 10249-1: 1996 BS EN 10268: 2006	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions Cold-rolled steel flat products with high yield strength for cold forming – Technical delivery conditions		

Amendments to Code of Practice for the Structural Use of Steel 2011 (2021 Edition) (March 2023)

Legends:

(3/2023)

Major amendments to the Code of Practice for the Structural Use of Steel 2011 (2021 Edition) included:

- (a) clause 1.4.1 revision of "acceptable Q A system" to "acceptable Quality Assurance system";
- (b) clause 2.1.3 revision relating to continuous design of high strength steels;
- (c) clause 3.1.1 and Table 3.1 revision of general information of high strength steels;
- (d) clause 3.1.2 and Table 4.1 revisions of material factors γ_{ml} and γ_{m2} , and the essentials of the basic requirements for various classes of steel;
- (e) Table 3.2 revision of design strength p_y for steels supplied in accordance with BS EN standards;
- (f) Table 3.3 revision of design strength p_y for steels supplied in accordance with Chinese standard GB50017;
- (g) clause 3.2 and Table 3.7 revision of methodology to determine maximum element thickness for prevention of brittle fracture in accordance with EN 1993-1-10;
- (h) clause 3.3.1 revision of limit of ultimate tensile strength for bolts;
- (i) clause 4.2.1 and Table 4.1 revision of material factors for various classes of steel;
- (j) clause 5.5.2.1 revision of galvanizing for high strength steels;
- (k) clause 7.1 revision of general information of high strength steels;

/(1) ...

- (1) Table 8.3 revision of bending strength p_b for welded sections;
- (m) Table 8.5 revision of shear buckling strength q_w for steel sections;
- (n) Table 8.7 revision of selection of buckling curves for different section types;
- (o) Table 8.8 revision of design strength p_c of compression members;
- (p) clause 8.9.3 and Tables 8.10 to 8.12 Alternative method of member buckling resistance;
- (q) Tables 9.2a & 9.2b revision of design strength of fillet welds;
- (r) clauses 9.3.4 & 9.3.6.1.3 and Tables 9.5, 9.6 & 9.8 revision of design parameters for bolts;
- (s) clause 11.7.3 revision of requirements on mechanical properties;
- (t) Table 11.7.5 revision of welding at cold-formed zones;
- (u) clause 12.1.3 revision of fire protection for connection plates and stiffeners:
- (v) Table 14.2b revision of hold time period before non-destructive testing of welds;
- (w) Annex A revisions of acceptable standards and references; and
- (x) Annex D revision of testing requirements of class 1H steel.

Amendments to Code of Practice for the Structural Use of Steel 2011 (2021 Edition) (March 2023)

Item	Current version	Amendments
1. Clause 1.1 ¹	Design recommendations in Sections 7, 8 and 9 cover the use of hot	Design recommendations in Sections 7, 8 and 9 cover the use of hot
	rolled steel sections, flats, plates, hot finished and cold formed structural	rolled steel sections, flats, plates, hot finished and cold formed structural
	hollow sections with steel grades up to yield stresses of 460 N/mm ² and	hollow sections with steel grades up to yield stresses of 460 N/mm² and
	allow use of yield stresses between 460 N/mm² and 690 N/mm² subject	allow use of yield stresses between 460 N/mm ² and 690 N/mm ² subject
	to restrictions. A new buckling curve a_0 is added for hot-finished hollow	to restrictions.
	sections of design strength greater than S460 or hot-finished seamless	
	hollow sections.	
	Section 11 provides simplified guidance on the use of cold-formed thin gauge steel sections with a design yield strength up to 550 N/mm ² . The use of cold formed hollow sections and sheet pile sections are incorporated in this section.	Section 11 provides simplified guidance on the use of cold-formed thin gauge steel open sections and sheet profiles with a design yield strength up to 550 N/mm ² . The use of cold formed hollow sections and sheet pile sections are incorporated in this section.
2. Clause 1.3 ²	In order to provide a single consistent set of standards for steel materials and products, their workmanship and Quality Assurance procedures, such standards and procedures shall generally be defined in the Code or as given in the acceptable references in Annex A1.	In order to provide a single consistent set of standards for steel materials and products, their workmanship and quality assurance procedures, such standards and procedures shall generally be defined in the Code or as given in the acceptable references in Annex A1.

General clarification of section description.
 General clarification.

Item	Current version	Amendments		
3. Clause 1.4.1 ³	acceptable Q A system	acceptable Quality Assurance system		
	BA	BA		
	The Hong Kong Building Authority	The Building Authority		
4. Clause 2.1.3 ⁴	In plastic analysis, the joints should have sufficient moment capacity to justify analysis assuming plastic hinges in the members. They should also have sufficient rotational stiffness for in-plane stability. Stability should be properly considered in all the analyses.	In plastic analysis, the joints should have sufficient moment capacity to justify analysis assuming plastic hinges in the members. They should also have sufficient rotational stiffness for in-plane stability. Stability should be properly considered in all the analyses. For steel with yield strengths greater than 460 N/mm² but less than or equal to 690 N/mm², the global elastic analysis shall be adopted to design structural members while the cross section and the member resistances are determined in accordance with the cross-section classifications of the members.		
5. Clause 3.1.1 ⁵	Class 1: Steel complying with one of the reference material standards in Annex A1.1 and basic requirements given in clause 3.1.2 and produced from a manufacturer with an acceptable Quality Assurance system. Class 2: Steel which has not been manufactured to one of the reference material standards in Annex A1.1 but is produced	Class 1: Steel complying with one of the reference material standards in Annex A1.1 and basic requirements given in clause 3.1.2 and produced from a manufacturer with an acceptable Quality Assurance system. Class 2: Steel which has not been manufactured to one of the reference material standards in Annex A1.1 but is produced		

General clarification of definitions.
 Addition of design philosophy for Class 1H steel.
 Revision of Class 1H steel in welded sections for normal use in steel structures and cold-formed steel hollow sections only.

Item		Current version		Amendments
	fr	om a manufacturer with an acceptable Quality Assurance	fi	rom a manufacturer with an acceptable Quality Assurance
	sy	stem. Such steel shall be tested to show that it complies	s	ystem. Such steel shall be tested to show that it complies
	w	ith one of the reference material standards in Annex A1.1	W	vith one of the reference material standards in Annex A1.1
	be	efore being used. Requirements on the sampling rate for	b	efore being used. Requirements on the sampling rate for
	te	sting are given in Annex D1.	te	esting are given in Annex D1.
	Hot rolled st	eels and cold-formed structural hollow sections are covered	Hot rolled st	teels and cold-formed structural hollow sections are covered
	in clause 3.1	and cold formed steel open sections and profiled sheets are	in clause 3.1	and cold formed steel open sections and profiled sheets are
	covered in c	lause 3.8.	covered in c	clause 3.8.
	Subject to ac	Iditional requirements and restrictions given in clause 3.1.3,		
	the Code co	vers an additional class of high strength steels with yield		
	strengths gr	eater than 460 N/mm ² and not greater than 690 N/mm ²		
	produced un	der an acceptable Quality Assurance system:		
6. Clause 3.1.1 ⁶	Class 1H:	High strength steels with yield strengths greater than	Class 1H:	High strength steels with yield strengths greater than
		$460\;N/mm^2$ but less than or equal to $690\;N/mm^2$ and		$460\;N/mm^2$ but less than or equal to $690\;N/mm^2$ and
		complying with one of the reference material standard in		complying with one of the reference material standards in
		Annex A1.1. Basic requirements for the steel and		Annex A1.1. Basic requirements for the steel and
		producer are given in clause 3.1.3. Requirements on the		producer are given in clause 3.1.2 and high strength steels
		sampling rate for testing are given in Annex D1.		shall be produced from a manufacturer with an acceptable
				Quality Assurance system.
	Class UH:	Ultra high strength steel with yield strengths greater than	Class UH:	Ultra high strength steels with yield strengths greater than 690 N/mm ² are not covered by the Code. Subject to the

⁶ Addition of acceptable Quality Assurance system to steel manufacturer.

Item	Current version	Amendments
	690 N/mm ² are not covered by the Code. Subject to the	approval of the Building Authority, they may be used in
	approval of the Hong Kong Building Authority, they may	bolted tension applications in the form of proprietary high
	be used in bolted tension applications in the form of	strength tie rods or bars, or in other applications. In
	proprietary high strength tie rods or bars, or in other	these cases, the Responsible Engineer shall provide a full
	applications. In these cases, the Responsible Engineer	justification and ensure that all requirements are met in the
	shall provide a full justification and ensure that all	submission of this material to the Building Authority.
	requirements are met in the submission of this material to	
	the Hong Kong Building Authority.	
7. Clause 3.1.1 ⁷	The Code covers both elastic and plastic analysis and design. Plastic	The Code covers both elastic and plastic analysis and design. Plastic
	analysis and design is not permitted for uncertified steels or for steels	analysis and design is not permitted for uncertified steels or for steels
	with yield strength greater than 460 N/mm ² . High strength steels may	with yield strength greater than 690 N/mm ² .
	give advantages for certain ultimate limit states but with limited	High strength steels may give advantages for certain ultimate limit states
	improvement against buckling. Their use does not improve the	such as compression resistances in heavily loaded columns and moment
	performance for fatigue and serviceability limit states.	resistances in long span beams, but with limited improvement in very
		slender columns undergoing primarily elastic buckling. Pre-cambering
		may be adopted to reduce beam deflections under dead and imposed
		loads . Their use does not improve the performance for fatigue and
		serviceability limit states.

⁷ Revision of yield strength limit of Class 1H steel.

Item			Curre	nt version			Amendments					
8. Table 3.18	Strength Grade	Class	Acceptable Quality Assurance system	Compliance with reference material Standard	Additional test Required	Remarks	Strength Grade	Class	Acceptable Quality Assurance system	Compliance with reference material Standard	Additional test Required	Remarks
	460 < Y _s ≤690	1H	Y	Y	Y	Shall comply with basic requirements. Use is	460 < Y _s ≤690	1H	Y	Y	N	Normal use
9. Clause 3.1.2 ⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Design s strengtl γm1 , γm2	are the materia strengt	e material fa	ctors given it be greater that	n Table 4. values and	1. These the design		
10. Clause 3.1.2 ¹⁰	The	• Strength: The design strength shall be the minimum yield strength but not greater than the minimum tensile strength divided by 1.2.					The Y _z /γ _r	_{n1} but not	•	e the minimun he minimum to in Table 4.1.		

Revision of Class 1H steel in welded sections for normal use with no additional test is required.
 Revision of material factor and Table 4.1.
 Revision of material factor and Table 4.1.

Item	Current version	Amendments
11. Clause 3.1.2 ¹¹	• Ductility : The elongation on a gauge length of $5.65\sqrt{S_o}$ is not to be less than 15% where So is the cross sectional area of the section.	 • Ductility: The elongation on a gauge length of 5.65√S₀ where S₀ is the cross sectional area of the section, should be as follows: For Classes 1 and 2 steel, the elongation at fracture is not to be less than 15%; For Class 1H steel, the elongation at fracture is not to be less than 10%; and The strain at the tensile strength should not be greater than 15 times the strain at the yield strength.
12. Clause 3.1.2 ¹²	• Weldability: The chemical composition and maximum carbon equivalent value for Class 1 steel shall conform to the respective reference materials standard in Annex A1.1. The minimum requirements on the chemical composition of the materials for Class 2 steel and particularly for Class 3 steel when welding is involved are as follows. The maximum carbon equivalent value shall not exceed 0.48% on ladle analysis and the carbon content shall not exceed 0.24%. For general applications, the maximum sulphur content shall not exceed 0.03% and the maximum phosphorus content shall not exceed 0.03%. When through thickness quality (Z quality) steel is specified, the sulphur content shall not exceed 0.01%.	• Weldability: The chemical composition and maximum carbon equivalent value for Classes 1, 2 and 1H steel shall conform to the respective reference materials standard in Annex A1.1. The minimum requirements on the chemical composition of the materials for Class 3 steel when welding is involved are as follows: a) The maximum carbon equivalent value shall not exceed 0.48% on ladle analysis and the carbon content shall not exceed 0.24%;

Revision of elongation requirement of Class 1H steel.
 Revision of requirement of chemical composition.

Item		Current version			Amendments		
	conform to the	ompositions of various grader requirements stipulated in ich where they are manufact	the national material	not exceed not exceed when the sulp The chemical conform to	 b) For general applications, the maximum sulphur content shall not exceed 0.03% and the maximum phosphorus content shall not exceed 0.03%; and c) When through thickness quality (Z quality) steel is specified, the sulphur content shall not exceed 0.01%. The chemical compositions of various grades of steel shall also conform to the requirements stipulated in the national materia standards to which where they are manufactured. 		
13. Table 3.2 ¹³	BS EN s	not rolled sections, hot finish		Table 3.2 - Design strength p _y for steels supplied in accordance with BS EN standards (plates, hot rolled sections, hot finished and cold formed hollow sections, cold formed sections and profiled sheets)			
	Steel grade	Thickness less than or equal to (mm)	Design strength p _y (N/mm ²)	Steel grade	Thickness less than or equal to (mm)	Design strength p _y (N/mm ²)	
	S460	16 40 63 80 100	460 440 430 410 400	S460	16 40 63 80 100	460 440 430 410 400	
				S550	50	550	

¹³ Addition of cold formed sections and profiled sheets to title of Table 3.2 and design strength values for S550 and S690 steel.

Item		Current version			Amendments				
	Note that the thickness of the thickest element of the cross section should				100	530			
	be ı	be used for strength classification of rolled sections.			150	490			
					50	690			
				S690	100	650			
					150	630			
					Note that the thickness of the thickest element of the cross section should be used for strength classification of rolled sections.				
14. Table 3.3 ¹⁴	Chi (pla	gn strength p _y for steels supnese standard GB50017 ates, hot rolled sections, hot flow sections)	-	Table 3.3 - Design strength p _y for steels supplied in accordance with Chinese standard GB50017 (plates, hot rolled sections, hot finished and cold formed hollow sections, cold formed sections and profiled sheets)					
	Steel grade	Thickness less than or equal to (mm)	Design strength $p_{y} (N/mm^{2})$	a) Q235 ~ Q					
		16	215						
		40	205	Steel	Thickness less than or	Design strength			
	Q235	60	200	grade	equal to (mm)	p _y (N/mm ²)			
		100	190		16	215			
		16	310	0225	40	205			
		35	295	Q235	100	200			
	Q345	50	265						
		100	250	Q345 <mark>/</mark>	16	305			
	Q390	16	350	Q355	40	295			

¹⁴ Addition of cold formed sections and profiled sheets to title of Table 3.3 and design strength values for Q460 to Q690 steel; Revision of design strength values for Q235 to Q420 steel.

Item	Current version			Amendments			
		35	335			63	290
		50	315			80	280
		100	295			100	270
	Q420	16	380	0200		16	345
		35	360		40	330	
		50	340		Q390	63	310
		100	325			100	295
					Q420	16	375
						40	355
						63	320
						100	305
						16	410
					0460	40	390
					Q460	63	355
						100	340
				a)	Q550 ~ Q69		
					Steel	Thickness less than or	Design strength
					grade	equal to (mm)	p _y (N/mm ²)
						16	520
						40	500
					Q550	63	475
						80	455
						100	445

Item	Current version	Amendments					
				16	630		
			0600	40	615		
			Q690	63	605		
				80	585		
15. Table 3.4 ¹⁵	Table 3.4 - Design strength p _y for North American steel supplied to	Table 3.4 - Design strength p _y for North American steel supplied to					
	ASTM Standards (plates, hot rolled sections, hot finished and cold	ASTM	I Standards (pla	ates, hot rolled sections, hot finished and cold			
	formed hollow sections)	formed hollow sections, cold formed sections and profiled sheets)					
16. Table 3.5 ¹⁶	Table 3.5 - Design strength p _y for steels supplied in accordance with	Table 3	d in accordance with				
	Australian standards (plates, hot rolled sections, hot finished and cold	Australian standards (plates, hot rolled sections, hot finished and cold					
	formed hollow sections)		formed hollow sections, cold formed sections and profiled sheets)				
17. Table 3.6 ¹⁷	Table 3.6 - Design strength py for Japanese JIS SN Steel (rolled steel	Table 3.6 - Design strength py for Japanese JIS SN Steel (rolled steel					
	for building products) to JIS G 3136 supplied in accordance with JIS	for building products) to JIS G 3136 supplied in accordance with JIS					
	standards (plates, hot rolled sections, hot finished and cold formed	standards (plates, hot rolled sections, hot finished and cold formed					
	hollow sections)		hollow sections, cold formed sections and profiled sheets)				

Addition of cold formed sections and profiled sheets to title of Table 3.4.
 Addition of cold formed sections and profiled sheets to title of Table 3.5.
 Addition of cold formed sections and profiled sheets to title of Table 3.6.

Item		Current version		Amendments
18. Clause 3.1.3 ¹⁸	3.1.3	Current version Design strength for high strength steels For high strength steels with a design strength greater than 460 N/mm^2 and not exceeding 690 N/mm^2 produced in accordance with the basic requirements in Annex D1.1, the design strength p_y may be taken as $Y_s/1.0$ but not greater than $U_s/1.2$, where Y_s and U_s are respectively the minimum yield strength (R_{eH}) and minimum tensile strength (R_m) specified in the relevant reference material standard or derived by the manufacturer using an acceptable Quality Assurance system. These materials typically obtain their strength through a	3.1.3	Amendments Design strength for ultra high strength steels For ultra high strength steels with a design strength greater than 690 N/mm ² produced in accordance with the basic requirements in Annex D1.1, the design strength p_y may be taken as Y_s/γ_{m1} but not greater than U_s/γ_{m2} , where Y_s and U_s are respectively the minimum yield strength (R_{eH}) and minimum tensile strength (R_m) specified in the relevant reference material standard or derived by the manufacturer using an acceptable Quality Assurance system, while γ_{m1} and γ_{m2} are the material factors according to manufacturer's
		These materials typically obtain their strength through a quenching and tempering heat-treatment and there are additional restraints on fabrication and design, particularly with welding, because heat may affect the strength of the parent steel. Bolted connection should be considered for certain high strength steels when welding is not allowed. The Responsible Engineer shall justify each design on a case-by-case basis using justified parameters and formulae proposed by manufacturers and verified by himself. Correct welding procedure specifications are essential and shall be specified. When high strength steel is used in compression, it shall be limited to compact sections where local buckling of outstands will not occur. The essentials of the basic requirements for high strength steels		recommendations. These materials typically obtain their strength through a quenching and tempering heat-treatment or a thermomechanically controlled process. There are additional restraints on fabrication and design, particularly with welding, because heat may affect the strength of the parent steel.

¹⁸ Revision of design strength of ultra high strength steel.

Item	Current version	Amendments
	are as stated in Annex D1.1 except that the maximum carbon content shall not exceed 0.20% and the maximum sulphur and phosphorus contents shall not exceed 0.025%.	
19. Clause 3.1.5 ¹⁹	3.1.5 Through thickness properties	3.1.5 Through thickness properties The essential requirement is an adequate deformation capacity
	The design strengths given in the standards refer to the longitudinal and transverse directions.	perpendicular to the plate surface to provide ductility and toughness against fracture under tension.
		The design strengths given in most material specifications refer to the longitudinal and transverse directions.
20. Clause 3.2 ²⁰	3.2 PREVENTION OF BRITTLE FRACTURE	3.2 PREVENTION OF BRITTLE FRACTURE
	Brittle fracture should be avoided by ensuring fabrication is free from significant defects and by using a steel quality with adequate notch toughness as quantified by the Charpy impact properties. The factors to be considered include the minimum service temperature, the thickness, the steel grade, the type of detail, the stress level and the strain rate or level. The welding consumables and welding procedures should also be chosen to ensure the Charpy impact test properties in the weld metal and the heat affected zone of the joint that are equivalent to,	Brittle fracture should be avoided by ensuring fabrication is free from significant defects and by using a steel quality with adequate notch toughness as quantified by the Charpy impact properties. The factors to be considered include the minimum service temperature, the thickness, the steel grade, the type of detail, the stress level and the strain rate The welding consumables and welding procedures should also be chosen to ensure the Charpy impact test properties in the weld metal and the heat affected zone of the joint that are equivalent to,

Revision of requirement of through thickness properties.
 Revision of requirement of Prevention of Brittle Fracture.

Item	Current version	Amendments
	or better than the minimum specified for the parent material, see	or better than the minimum specified for the parent material, see
	clause 3.4.	clauses 3.4 and 14.3.
	In Hong Kong the minimum service temperature T_{min} in the steel	In Hong Kong the minimum service temperature T_{min} in the steel
	should normally be taken as 0.1°C for external steelwork. For	should normally be taken as 0.1°C for external steelwork. For
	locations subject to exceptionally low temperatures, such as cold	locations subject to exceptionally low temperatures, such as cold
	storage or structures to be constructed in other countries, T_{min}	storage or structures to be constructed in other countries, T_{min}
	should be taken as the minimum temperature expected to occur in	should be taken as the minimum temperature expected to occur in
	the steel within the design working life.	the steel within the design working life.
	The steel quality to be selected for each component should be such that the thickness I of each element satisfies:	
	$t \leq Kt_r$ (3.1) where	The guidance given in this section should be used for the selection
	K is a factor that depends upon the type of detail, the general stress level, the stress concentration effects and the strain conditions, see Table 3.8;	of material for new construction. It is not intended to cover the
	t ₁ is the limiting thickness at the appropriate minimum service temperature T _{rolt} . For a given steel grade and quality, the value of t ₂ may be determined from the following:	assessment of materials in service. The rules should be used to
	- If $T_{27J} \le T_{min} + 20^{\circ}\text{C}$:	select a suitable grade of steel from the steel products as listed in
	$t_1 \le 50 (1.2)^{\text{V}} \left[\frac{355}{\text{Y}_{\text{ram}}} \right]^{1/4}$ $- \text{If } T_{272} \ge T_{\text{rate}} + 20^{\circ}\text{C}; \qquad (3.2)$	Annex A1.
	$t_1 \le 50 (1.2)^{\text{V}} \left(\frac{35 + T_{\min} - T_{27J}}{15} \right) \left[\frac{355}{Y_{\min}} \right]^{1.6}$ (3.3)	The rules are applicable to tension elements, welded and fatigue
	In which:	stressed elements in which some portions of the stress cycle are
	$N = \left(\frac{T_{min} - T_{2fJ}}{10}\right)$ (3.4)	tensile. Fracture toughness need not be specified for elements
	where T _{ext} is the minimum service temperature (in "C) expected to occur in the steel within the design working life of the part;	only in compression.
	T_{27J} is the test temperature (in °C) for which a minimum Charpy impact value C_v of 27J is specified in the product standard.	The rules shall be applied to the properties of materials specified
	Y _{nex} is the nominal yield stress (in N/mm²) for the specified thickness, this may be taken as the design strength p _y .	for the toughness quality in the relevant steel product standard.
	Table 3.7 lists values of t ₁ for the normal strength range and T_{27J} values.	Material of a lower grade shall not be used even though test results
		show compliance with the specific grade.

Current version Amendments Item 3.2.1 Procedure Table 3.7 - Maximum basic thickness t₁ (mm) for minimum service temperature (*C), 27J Charpy Impact value and strength grade of steel Strength Specified temperature for 27J minimum in Charpy test (*C) Grade 3.2.1.1 The steel grade should be selected after taking account of: 145 101 174 251 301 154 235 89 128 222 266 Steel material properties: 124 213 275 103 178 310 104 150 180 - Yield strength depending on the material thickness 350 51 73 88 127 152 $p_{v}(t)$ 355 50 72 86 124 149 45 380 65 79 113 136 Toughness quality expressed in terms of T and J_{mi} 104 Note, these thicknesses must be multiplied by the appropriate K factor from Table 3.8 to determine the actual thickness permitted for the grade of steel. where T is the temperature under Charpy impact test; In addition, the maximum thickness of the component (t) should not exceed the maximum and thickness at which the full Charpy impact value applies to the selected steel quality for that product type and steel grade, according to the relevant acceptable standard given in Annex A1.1 for the particular steel product. J_{min} is the guaranteed value of Charpy impact energy For rolled sections, I and It should be related to the same element of the cross-section as Member characteristics: the factor K but the maximum thickness as defined above should be related to the thickest element of the cross-section. Member shape and detail Table 3.8 - Factor K for type of detail, stress level and strain conditions Type of details or location Element thickness (t) Components in tension due to Components factored loads not subject to applied Stress < 0.3Ymm Design situations: Stress ≥ 0.3Y_{non} tension Plain steel 4 - Design value of minimum service temperature, Drilled holes or reamed holes 1.5 Punched holes (un-reamed) 1.5 2 Flame cut edges Welded, generally 1.5 2 Welded, partial penetration and Maximum stress σ derived from the design 0.8 1 1.5 fillet welds Welded connections to 0.5 0.75 1 unstiffened flanges. condition described in clause 3.2.1.3 below Welded across ends of cover 0.5 0.75 plates - For cold-formed steel sections with significant Where parts are required to withstand significant plastic deformation at the minimum service temperature (such as crash barriers or crane stoos) K should be halved NOTE 2 Base plates attached to columns by nominal welds only, for the purposes of location in use and transverse bending, for example, cold-formed socurity in transit, should be classified as plain steel. NOTE 3. Welded attachments not exceeding 150 mm in length should not be classed as cover plates. NOTE 4. For the wolded condition the Charpy impact energy of the wold motal and the HAZ shall match that circular and rectangular hollow sections, the of the parent material. Compliance with this requirement shall be demonstrated through welding areanduse trials. minimum service temperature should be reduced by 5°C.

Item	Current version	Amendments
		where t is the thickness of the plate in mm or taken as
		R_{eH} -values from the relevant steel material specifications or standards.
		The tabulated values are given in terms of a choice of seven reference
		temperatures: +10, 0, -10, -20, -30, -40 and -50°C.

Item	Current version	Amendments
		Table 3.7 Maximum permissible values of element thickness t in mm Sub-grade
		State GRU, ASTM, INS, ASTM, I
		JR 8 20 27 60 50 40 35 30 25 20 90 75 65 55 45 40 35 135 115 100 85 75 65 8
		235 J.O C As-rolled 0 27 90 75 80 50 40 35 30 125 105 90 75 85 5 45 175 155 135 115 100 85 7
		JR B 20 27 55 45 36 30 25 20 15 80 70 55 50 40 35 30 125 110 95 80 70 60 5
		70 C As-rolled 0 27 75 65 85 45 35 30 25 115 95 30 70 15 50 40 165 145 125 110 95 80 7 275 12 D 27 110 95 75 65 85 45 35 155 130 115 95 80 70 85 20 190 165 145 125 110 95 80 7 275 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		M/N B,C TMCP7 -20 40 135 110 95 75 65 95 45 180 155 130 115 95 80 70 200 200 190 165 145 125 11
		ML,NL C,D Normalized -50 27 185 160 135 110 95 75 65 200 200 180 155 130 115 95 230 200 200 200 180 155 130 115
		345 JO C As-rolled 0 27 40 35 25 20 15 15 15 10 65 55 45 40 30 25 25 110 95 80 70 60 55 4
		350, 12 D -20 27 90 75 60 50 40 35 25 135 110 96 80 65 55 45 200 175 150 130 110 95 8
		355 R2,N(N B,C TMCP) -20 40 110 90 75 80 50 40 35 155 135 110 95 80 65 55 200 200 175 150 130 110 9
		MLNL C,D Normalized -50 27 155 130 110 90 75 60 50 200 180 155 135 110 95 80 210 200 200 200 175 150 13
		420 ML,NL C,D Normalized 450 27 135 115 66 80 66 55 45 190 165 140 120 100 85 70 200 200 200 185 160 140 12
		Q B,C QT 420 30 70 60 50 40 30 25 20 110 95 75 65 55 45 35 175 155 130 115 95 80 7
		M(N B,C TMCP -20 40 90 70 60 50 40 30 25 130 110 96 75 65 55 45 200 175 155 130 115 95 8
		ML,NL C,D TMCP -50 27 125 105 90 70 60 50 40 180 155 130 110 95 75 65 200 200 200 175 155 130 11
		QL1 D,E QT 460 30 150 125 105 80 70 60 50 200 180 155 130 110 95 75 215 200 200 175 155 13 Q B,C 0 40 50 40 30 25 20 15 10 80 65 55 45 35 30 25 140 120 100 85 75 10 80 95
		Q B,C 420 30 60 50 40 30 25 20 15 95 80 65 55 45 35 30 165 140 120 100 85 75 8
		S50 QL C,D QT -20 40 75 60 50 40 30 25 20 115 95 80 66 55 45 35 185 160 140 120 100 85 7
		GL GD 40 30 90 75 60 50 40 30 25 135 135 135 66 66 56 45 200 188 160 140 120 100 8
		QL1 D,E 40 40 110 90 75 60 50 40 30 160 135 115 95 80 65 55 200 200 185 160 140 120 100 100 100 100 100 100 100 100 10
		Q B,C 0 40 40 30 25 20 15 10 10 65 55 45 35 30 20 20 120 100 85 75 60 50 4
		Q B,C 420 30 50 40 30 25 20 15 10 80 65 55 45 35 30 20 140 120 100 85 75 60 9
		690 QL C,D QT 40 60 50 40 30 25 20 15 95 80 65 55 45 35 30 165 140 120 100 85 75 6 69 60 QL C,D
		QL1 D,E 40 40 90 75 60 50 40 30 25 135 115 96 80 65 55 45 200 190 165 140 120 100 8
		QL1 D,E -60 30 110 90 75 60 50 40 30 160 135 115 95 80 65 55 200 200 190 165 140 120 10
		Notes:
		 Linear interpolation can be used in applying Table 3.7. Most applications require ^a values between 0.75 p_i(t) and 0.5 p_i(t), and hence, □= 0.25 p_i(t) is given for interpolation purposes. Extrapolations beyond the extreme values are not valid.
		Table 3.7 has been derived from guarantee values of Charpy impact energy in the direction of the rolling of the product.
		Table 3.7 is also applicable for sleel products supplied to other steel material specifications listed in Annex A1.1 with
		similar steel grades, i.e. having the same or similar minimum guaranteed values of Charpy impact energy. TMCP denotes the manufacturing process of thermo-mechanically controlled process corresponding to BS EN 10025-4.
		 TMCP denotes the manufacturing process of thermo-mechanically controlled process corresponding to BS EN 10025-4. QT denotes the manufacturing process of quenching and tempering process corresponding to BS EN 10025-6.

Item	Current version	Amendments		
21. Clause 3.3.1 ²¹	Bolts with an ultimate tensile strength exceeding 1000 N/mm² should not be used unless test results demonstrate their acceptability in particular design application.	Bolts with an ultimate tensile strength exceeding 1200 N/mm² should not be used unless test results demonstrate their acceptability in a particular design application.		
22. Table 3.4 ²²	3.4 WELDING CONSUMABLES	3.4 WELDING CONSUMABLES		
	All welding consumables shall conform to the requirements of the reference standards given in Annex A1.4. For steel with design strength not exceeding 460 N/mm² the specified yield strength, ultimate tensile strength, elongation at failure and Charpy energy value of the welding consumables shall be equal to or better than the corresponding values specified for the grad of steel being welded. The most onerous grade shall govern it dissimilar grades are welded together. For high and ultra-high strength steels, the welding material may, if necessary to produce a suitable joint, be of a lower strength; the elongation to failur and Charpy impact value should still match those of the parent material. In that case, the design strength of the weld must be based on the weld material.	the reference standards given in Annex A1.4. For steel with design strength not exceeding 690 N/mm², the specified yield strength, ultimate tensile strength, elongation at failure and Charpy impact value of the welding consumables shall be equal to or better than the corresponding values specified for the grade of steel being welded. The most onerous grade shall govern if dissimilar grades are welded together. For ultrahigh strength steels, the welding consumables may, if necessary to produce a suitable joint, be of a lower strength; the elongation to failure and Charpy impact value should still match		

Revision of limit of ultimate tensile strength of bolt.
 Revision of limit of design strength of steel.

Item	Current version	Amendments
23. Clause 3.8.1.3 ²³	High strength steel with limited ductility	High strength steel strips with limited ductility
	For Class 1H steel strips that failed to comply with the ductility	For high strength S550 steel strips that failed to comply with the
	requirements list in clause 3.8.1.2, the use of steel materials should be	ductility requirements listed in clause 3.8.1.2, the use of steel
	limited to members under lateral loads primarily, and the design yield	materials should be limited to members under lateral loads primarily,
	strength should be reduced as follows:	and the design yield strength should be reduced as follows:
24. Table 3.8 ²⁴	Table 3.9 - Yield and ultimate strengths for steels supplied in	Table 3.8 - Yield and tensile strengths for steels supplied in
	accordance with various national standards	accordance with various national standards
25. Table 3.8 (Cont') ²⁵	Table 3.9 - Yield and ultimate strengths for steels supplied in	Table 3.8 - Yield and tensile strengths for steels supplied in
	accordance with various national standards (continued)	accordance with various national standards (continued)

Addition of high strength S550 steel.
 Revision of title of Table 3.9.
 Revision of title of Table 3.9 (continued).

Item	Current version	Amendments
26. Page Index of Clause 3 ²⁶	3 MATERIALS 30 3.1 Structural Steel 30 3.1.1 General 30 3.1.2 Design strength for normal strength steels 31 3.1.3 Design strength for high strength steels 36 3.1.4 Uncertified steel 36 3.1.5 Through thickness properties 36 3.1.6 Other properties 36 3.2 Prevention of Brittle Fracture 37 3.3 Bolts 39 3.3.1 Normal bolts 39 3.3.2 High strength friction grip or preloaded bolts 39 3.4 Welding Consumables 39 3.5 Steel Castings and Forgings 39 3.6 Materials for Grouting of Baseplates 39 3.7 Materials for Composite Construction 39 3.7.1 Concrete 39 3.7.2 Reinforcement 39 3.7.3 Profiled steel sheets 40 3.7.4 Shear stude 40 3.8.1 Mechanical properties 40 3.8.1 <t< td=""><td>3 MATERIALS</td></t<>	3 MATERIALS
27. Clause 4.2.1 ²⁷	For high strength Class 1H steel plates and sections with a yield stress greater than 460 N/mm ² and which are supplied from a known source complying with the specification requirements in Annex A1.1 of the Code, the partial material factor γ_{ml} should be 1.0. For ultra high strength Class UH steel plates and sections with a yield stress greater than 690 N/mm ² and which are supplied from a recognized source complying with specific requirements, the partial material factor γ_{ml} should refer to manufacturer's recommendations.	For high strength Class 1H steel plates and sections with a yield stress greater than 460 N/mm² but less than or equal to 690 N/mm² and complying with one of the reference material standards in Annex A1.1 , the partial material factors are given in Table 4.1 For ultra high strength Class UH steel plates and sections with a yield stress greater than 690 N/mm² and complying with one of the reference material standards in Annex 1.1, the partial material factor should refer to manufacturer's recommendations.

Revision of page index of Clause 3.
 Revision of Class 1H steel for normal use in steel structures and material factors.

Item	Current version					Amendments						
28. Table 4.1 ²⁸	Table 4.1 - Material factors γ_{m1} and γ_{m2} for various classes of steels					Table 4.1 – Material factors γ_{m1} and γ_{m2} for various classes of steels					f steels	
	Class	Class $Y_s \le 460 \text{ N/mm}^2$ $460 < Y_s \le 690 \text{ N/mm}^2$		Class	$Y_s \le 46$	0 N/mm ²	460 < Y _s ≤	690 N/mm ²				
		γ_{m1}	γ _{m2}	$\gamma_{\rm m1}$	γ_{m2}			γ_{m1}	γ_{m2}	γ _{m1}	γ _{m2}	
	1	1.0	1.2	-	-		1	1.0	1.1	-	-	
	2	1.1	1.3	-	-		2	1.1	1.2	-	-	
	3	*	*	-	-		3	*	*	-	-	
	1H	-	-	1.0	1.2		1H	-	-	1.0	1.05	
29. Clause 5.5.2.1 ²⁹	greater than metallurgica grade or equ and coated v	460 N/mm Il change or a nivalent shou with zinc-rich	² should no annealing. Ild not be gath or appropr	t be galvaniz Bolts of ISO	-	oid gher	galvanized, appropriate j Hollow sect Some high s may be sens care should while specia the risk of c BS EN IS	but should protective protective protective protective to crack the taken. It dipping pracking and the influence on the influence protection on the influence protective protection on the influence protective protection on the influence protective protective protection on the influence protective protection on the influence protective prote	be sherad vaint. be vented it the be with yie cking during Hence, so the control of the control	ized and coard they are to be a strength ground grant and coard they are to be a strength ground the strength and be executed wided further to the strength and	uivalent should ted with zinc-regalvanized. eater than 460 leater than 460 le	N/mm ² special rovided lleviate

Revision of material factor for Class 1, Class 2 and Class 1H steel.
 Deletion of restriction of galvanization to steel with design strength greater than 460 N/mm²; Addition of recommendation for cracking due to galvanization with guideline from BS EN ISO 14713-2.

Item	Current version	Amendments
30. Clause 7.1 ³⁰	This section covers steel grades with design strength not greater than 460 MPa and its extension to higher steel grades should be justified.	This section covers steel grades with design strength not greater than 690 N/mm ² and its extension to higher steel grades should be justified.
31. Clause 8.1 ³¹	When Class 3 uncertified steel is used, the buckling curves for the steel material should be obtained from a reliable source and the material buckling strength so determined should be limited to the material strength given in clause 3.1.4. Formulae in this section are applicable to high strength steel of Class 1H provided that it meets the requirements for weldability, strength, ductility and resistance to brittle fracture specified in clause 3.1.3. For design against buckling tests may be required to determine the Robertson constant as defined in Appendix 8.4 where design curves are not available from the manufacturer.	When Class 3 uncertified steel is used, the buckling curves for the steel material should be obtained from a reliable source and the material buckling strength so determined should be limited to the material strength given in clause 3.1.4.
32. Clause 8.2.2.1 ³²	When high or ultra-high strength steel is used, the use of a plastic modulus is not permitted.	When high strength steel is used, the use of a Class 4 slender section is not permitted. When ultra high strength steel is used, the use of a plastic modulus is not permitted.

Revision of Class 1H steel for normal use in steel structures.
Revision of Class 1H steel for normal use in steel structures; Deletion of condition for design Class 1H steel with formulae in Section 8.
Revision of section limit for Class 1H steel.

Item	Current version	Amendments
33. Clause 8.3.5.2 ³³	p_b is the buckling strength of the beam, determined from Table 8.3a for hot-rolled sections and Table 8.3b for welded sections using a suitable equivalent slenderness λ_{LT} in clause 8.3.5.3 and relevant design strength p_y . Alternatively, formulae in Appendix 8.1 may be used to compute p_b .	p_b is the buckling strength of the beam, determined from Table 8.3a for hot-rolled sections and Table 8.3b for welded sections using a suitable equivalent slenderness λ_{LT} in clause 8.3.5.3 and relevant design strength p_y . When high strength steel is used, the use of a Class 4 slender section is not permitted. Alternatively, formulae in Appendix 8.1 may be used to compute p_b .
34. Table 8.3b ³⁴	Table 8.3b - Bending strength p_b (N/mm²) for welded sections	Table 8.3b - Bending strength p_b (N/mm²) for welded sections (i) S275 ~ S460 steel

Addition of section limit for Class 1H steel.
 Addition of bending strength for S550 and S690 steel.

Table 8.3b - Bending strength pb (N/mm²) for welded sections (Cont'd) (ii) \$550 ~ \$690 steel Strength grade and design strength py (N/mm2) λ_{LT} S550 S690 554 505 457 411 568 517 467 422 30 456 484 499 595 40 45 347 366 375 446 55 60 65 70 297 284 269 254 369 345 321 294 378 353 327 297 396 368 339 303 329 312 319 267 274 219 200 183 168 226 205 187 171 80 85 228 208 239 216 241 218 245 95 173 179 180 183 151 139 129 119 105 142 145 146 150 153 113 120 115 118 120 98 92 86 80 102 95 89 84 103 96 90 84 104 97 130 100 87 82 145 82 85 74 70 66 62 155 160 71 67 72 73 74 70 66 62 75 170 61 60 61 63 56 53 51 48 54 51 55 52 56 53 50 48 180 185 55 52 56 53 47 195 47 47 48 41 42 38 35 32 210 41 42 41 42 38 35 32 240 32 32 32 32 24.7 24.3 22.7

Item		Current version					Amendments													
35. Table 8.3c ³⁵		Table	8.3c - Ber	nding stre	ngth p₅ (N/r	mm²) for o	ther steel	source				Table 8.3c - Bending strength p_b (N/mm 2) for other steel source								
	Bending strength for rolled sections						rength for w													
				ign strength				de and des					(i) E	sending strei						
	λ _{LT}	Q235 215	Q345 310	Q390 350	Q420 380	λ _{LT}	Q235 215	Q345 310	Q390 350	Q420 380		l ,	Q235	O345/O355	Steel gra	de and desig	n strength (N/mm²)	0.0	300
	25	215	310	350	380	25	215	310	350	380		λLT	215	305	345	375	410	520	615	630
	30 35	215 215	310 303	350 336	377 381	30 35	215 215	310 296	350 324	374 344		25	215	305	345	375	410	520	604	618
	40	212	289	321	344	40	210	272	297	316		30 35	215 215	305 299	345 332	373 357	403 386	497 473	577 546	589 557
	45	203	276	305	326	45	194	250	273	289		40	212	286	317	340	367	447	512	522
	50	194	282	288	307	50	178	230	250	285		45	204	272	302	323	347	419	475	484
	55	185	247	271	288	55	185	211	229	242		50	195	259	285	305	326	389	436	443
	60	176	232	254	268	60	152	194	210	225		55	186	259 245	285 268	305 286	326 305	389 358 327	396	402
	65	167 158	218 203	236 219	249 230	65 70	141	179 173	201 194	217		60 65	177 168	230 216	251 234	266 247	283 261	327 298	358	363 326
	70	156	203	219	230	/0	131	1/3	194	208		70	159	202	218	229	241	271	436 396 358 323 291	294
	75	149	189	203	212	75	121	167	185	198	1									
	80 85	141 133	176 164	188 174	196 180	80 85	115 112	161 154	177 168	188 178	1	75 80	150 141	188 175	202 187	211 195	221 203	246 224	262 237	264 239
	90	125	152	161	186	90	109	147	160	186		85	133	163	173	180	187	204	215	216
	95	117	141	149	153	95	105	140	149	153		90	125	151	160	166	172	186	195	196
	400	440	404	400	440	400	400	404	400			95	118	141	148	153	158	171	178	179
	100 105	110 103	131 122	138 128	142 131	100 105	102 98	131 122	138 128	142 131		100	111	131	137	142	146	157	163	164
	110	97	114	119	122	110	95	114	119	122		105	104	122	128	131	135	144	150	150
	115	91	106	110	113	115	91	106	110	113		110 115	98 92	114	119	122	125	133	138 127	138 128
	120	86	99	103	105	120	86	99	103	105		120	87	106 99	110 103	113 106	116 108	123 114	118	118
	125	81	93	96	98	125	81	93	96	98										
	130	77	87	90	92	130	77	87	90	92		125 130	82 77	93 87	96 90	99 92	101 94	106 99	109 102	110 102
	135 140	72 68	82 77	84 79	86 81	135 140	72 68	82 77	84 79	86 81		135	73	82 77	85 80	86	88	93 87	95	95
	145	65	72	75	76	145	65	72	75	76		140	69			81	83		95 89	89
												145	65	73	75	76	78	81	83	84
	150 155	61 58	68 65	70 68	72 68	150 155	61 58	68 65	70 68	72 68		150	62	69	71	72	73	76	78	79
	160	55	61	63	64	160	55	61	63	64		155	59	65	67	68	69	72 68	74	74
	165	52	58	59	60	165	52	58	59	60		160 165	56 53	61 58	63 60	64 61	65 62	64	69 66	70 66
	170	50	55	58	57	170	50	55	56	57		170	50	55	57	58	58	61	62	62
	175	47	52	53	54	175	47	52	53	54	1	475	40	50				67	50	50
	180	45	50	51	51	180	45	50	51	51	1	175 180	48 46	52 50	54 51	55 52	55 53	57 55	59 56	59 56
	185 190	43 41	47 45	48 48	49 47	185 190	43 41	47 45	48 46	49 47	1	185	44	47	49	49	50	52	53	53
	190	39	43	40	44	190	39	43	40	44	1	190	42	45 43	46 44	47 45	48 45	49 47	50 48	50 48
	1 1										1	195	38	43	**	40	40	47	40	40
	200 210	38 35	41 37	42 38	42 39	200 210	38 35	41 37	42 38	42 39	1	200	38	41	42	43	43	45	46	46
	220	32	34	35	35	220	32	34	35	35	1	210	35 32	38 35	39 35	39 36	40 36	41 37	42 38	42 38
	230	29	32	32	33	230	29	32	32	33		220 230	32	32	33	33	33	34	35	35
	240	27	29	30	30	240	27	29	30	30	1	240	28	30	30	31	31	32	32	32
	250	25	27	28	28	250	25	27	28	28	1	250	26	27	28	28	29	29	30	30
	λ_{L0}	38.8	32.3	30.4	29.2	λ_{L0}	38.8	32.3	30.4	29.2		λ _ω	38.8	32.3	30.6	29.4	28.1	25.0	22.9	22.7
						- 20						~@	30.0	02.0	00.0	20.1	20.1	20.0	22.0	22.1
		λ _{L0} is the	maximum	slendernes	ss ratio of th	ne member	having ne	gligible bu	ckling effe	ct.		λ _ω	is the ma	kimum slende	rness ratio	of the mem	ber having	negligible	buckling eff	ect.

Addition of bending strength for Q355, Q550 and Q690 steel; Revision of bending strength for Q345, Q390 and Q420 steel. - 28 -

Item	Current version	Amendments								
		Table 8.3c - Bending strength pb (N/mm²) for other steel source (ii) Bending strength for welded sections Steel grade and design strength (N/mm²)								
		λ_{LT}	Q235	Q345/Q355	Q390	Q420	Q460	Q550	QE	390
		25 30 35 40 45	215 215 215 215 215 211 194	305 305 305 293 269 248	345 345 345 321 295 270	375 375 371 341 313 287	410 410 397 365 334 306	520 520 477 437 398 361	615 594 544 496 449 405	630 606 554 505 457 411
		50 55 60 65 70	179 165 153 141 131	228 209 193 177 171	248 227 209 199 192	263 240 223 215 206	279 255 242 232 222	328 314 298 281 264	382 362 340 316 291	391 369 345 321 294
		75 80 85 90 95	122 116 113 109 106	165 159 152 146 139	184 176 167 159 148	197 187 177 166 153	210 199 187 172 158	246 224 204 186 171	262 237 215 195 178	264 239 216 196 179
		100 105 110 115 120	102 99 95 91 87	131 122 114 106 99	137 128 119 110 103	142 131 122 113 106	146 135 125 116 108	157 144 133 123 114	163 150 138 127 118	164 150 138 128 118
		125 130 135 140 145	82 77 73 69 65	93 87 82 77 73	96 90 85 80 75	99 92 86 81 76	101 94 88 83 78	106 99 93 87 81	109 102 95 89 83	110 102 95 89 84
		150 155 160 165 170	62 59 56 53 50	69 65 61 58 55	71 87 63 80 57	72 68 64 61 58	73 69 65 62 58	76 72 68 64 61	78 74 69 66 62	79 74 70 66 62
		175 180 185 190 195	48 46 44 42 40	52 50 47 45 43	54 51 49 48 44	55 52 49 47 45	55 53 50 48 45	57 55 52 49 47	59 56 53 50 48	59 56 53 50 48
		200 210 220 230 240	38 35 32 30 28	41 38 35 32 30	42 39 35 33 30	43 39 36 33 31	43 40 36 33 31	45 41 37 34 32	46 42 38 35 32	46 42 38 35 32
		250	26	27	28	28	29	29	30	30
		210	38.8	32.3	30.6	29.4	28.1	25.0	22.9	22.7
		à	_ம is the ma	ximum slende	erness ratio	of the mer	mber having	g negligible	buckling ef	fect.

Item	Current version	Amendments
36. Table 8.5b ³⁶	Table 8.5b - Shear buckling strength q _w (N/mm²) of a web (for 16mm ≤ t ≤ 40mm) 2) Grade \$275 steel, web thickness >16mm ≤ 40mm – design strength p _v = 265N/mm²	Table 8.5b - Shear buckling strength q_w (N/mm²) of a web (for 16mm $\leq t \leq 40$ mm) 2) Grade \$275 steel, web thickness >16mm ≤ 40 mm – design strength $\rho_v = 265$ N/mm²
	d/t Stiffener spacing ratio a/d	d/t Stiffener spacing ratio a/d
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 ∞ 55 159 159 159 159 159 159 159 159 159 1
	80 159 159 159 159 159 159 159 159 159 150 151 153 150 148 147 144 142 138 85 159 159 159 159 159 158 152 148 145 143 141 138 136 132 90 159 159 159 159 159 158 153 147 143 139 137 135 132 130 126 95 169 159 159 159 159 150 154 149 142 137 134 131 129 126 124 120 100 159 159 159 159 156 150 144 137 132 128 126 124 120 118 113	80 159 159 159 159 159 159 159 159 159 159
	105 159 159 159 159 152 145 139 132 127 123 120 118 114 112 108 110 159 159 156 148 141 134 127 121 117 114 112 109 107 103 115 159 159 152 144 136 130 122 116 112 110 108 104 103 99 120 159 159 158 149 140 132 125 117 111 108 105 103 100 98 95 125 159 159 155 145 136 127 120 112 107 103 101 99 96 94 91	105 159 159 159 159 152 146 139 132 127 123 120 118 114 112 108 110 159 159 159 156 148 141 134 127 121 117 114 112 109 107 103 115 159 159 159 152 144 138 130 122 116 112 110 108 104 103 99 120 159 159 158 149 140 132 125 117 111 108 105 103 100 98 95 125 159 159 155 145 136 127 120 112 107 103 101 99 96 94 91
	130 159 159 152 141 132 123 116 108 103 99 97 95 92 91 87 135 159 159 148 137 127 119 111 104 99 96 93 92 89 87 84 140 159 158 145 134 123 114 107 100 95 92 90 88 86 84 81 145 159 155 142 130 119 110 104 97 92 89 87 85 83 81 78 150 159 152 139 126 115 107 100 93 89 88 84 82 80 79 76	130 159 159 152 141 132 123 116 108 103 99 97 95 92 91 87 135 159 159 148 137 127 119 111 104 99 96 93 92 89 87 84 140 159 158 145 134 123 114 107 100 95 92 90 88 86 84 81 145 159 155 142 130 119 110 104 97 92 89 87 85 83 81 78 150 159 152 139 126 115 107 100 93 89 86 84 82 80 79 76
	155 159 149 135 122 111 103 97 90 86 83 81 80 77 76 73 160 169 147 132 119 108 100 94 87 83 81 79 77 75 74 71 165 159 144 129 115 105 97 91 85 81 78 76 75 73 72 69 170 158 141 125 112 102 94 88 82 78 76 74 73 71 69 67 175 156 138 122 108 99 91 88 80 76 74 72 71 69 67 65	155 159 149 135 122 111 103 97 90 86 83 81 80 77 76 73 160 159 147 132 119 108 100 94 87 83 81 79 77 75 74 71 185 159 144 129 115 105 97 91 85 81 78 76 75 73 72 69 170 158 141 125 112 102 94 88 82 78 76 74 73 71 69 67 175 156 138 122 108 99 91 88 80 76 74 72 71 69 67 65
	180 153 135 119 105 96 89 83 78 74 72 70 69 67 66 63 185 151 132 115 102 93 88 81 76 72 70 68 67 65 64 61 190 149 129 112 100 91 84 79 74 70 68 66 65 63 62 60 195 146 127 109 97 89 82 77 72 68 66 65 63 62 61 58 200 144 124 107 95 86 80 75 70 67 65 63 62 60 59 57	180 153 135 119 105 96 89 83 78 74 72 70 69 67 66 63 185 151 132 115 102 93 86 81 76 72 70 68 67 65 64 61 190 149 129 112 100 91 84 79 74 70 68 66 65 63 62 60 195 146 127 109 97 89 82 77 72 68 66 65 63 62 61 58 200 144 124 107 95 88 80 75 70 67 65 63 62 60 59 57
	205 141 121 104 92 84 78 73 68 65 63 61 60 59 58 55 210 139 118 102 90 82 76 71 67 64 61 60 59 57 56 54 54 54 54 54 54 54	205 141 121 104 92 84 78 73 68 65 63 61 60 59 58 55 210 139 118 102 90 82 76 71 67 64 61 60 59 57 56 54 215 137 115 99 88 80 74 70 65 62 60 59 58 56 55 53 220 134 112 97 88 73 68 64 61 59 57 56 55 53 220 134 112 97 88 73 68 64 61 59 57 56 55 53 225 132 110 95 84 77 71 67 62 59 57 56 55 53 52 50
	230 130 108 93 82 75 70 65 61 58 56 55 54 52 51 49 235 127 105 91 81 73 68 64 60 57 55 54 53 51 50 48 240 125 103 89 79 72 67 63 58 56 54 52 50 49 47 245 123 101 87 77 70 65 61 57 54 52 50 49 48 46 250 120 99 85 76 69 64 80 56 53 52 50 49 48 47 45	230 130 108 93 82 75 70 65 61 58 56 55 54 52 51 49 235 127 105 91 81 73 68 64 60 57 55 54 53 51 50 48 240 125 103 89 79 72 67 63 58 56 54 52 52 50 49 47 245 123 101 87 77 70 65 61 57 54 53 51 50 49 47 250 120 99 85 76 69 64 60 56 53 52 50 49 48 47 45
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

³⁶ Revision of web thickness.

Item	Current version	Amendments
37. Table 8.5d ³⁷	Table 8.5d - Shear buckling strength q _w (N/mm²) of a web (for 16mm ≤ t ≤ 40mm) 4) Grade \$355 steel, web thickness > 16mm ≤ 40mm - design strength p _v = 345N/mm² 1	Table 8.5d - Shear buckling strength q_w (N/mm²) of a web (for 16mm $\frac{1}{8}$ t ≤ 40mm) A Grade \$355 steel, web thickness > 16mm ≤ 40mm - design strength $p_v = 345N/mm²$ A Strength q_w A Strength q

³⁷ Revision of web thickness.

Item	Current version	Amendments								
38. Table 8.5e ³⁸	Table 8.5e - Shear buckling strength <i>q</i> _w (N/mm²) of a web (for <i>t</i> ≤16mm)	Table 8.5e - Shear buckling strength q _w (N/mm²) of a web (for t≤16mm)								
	5) Grade Q235 steel, web thickness ≤16mm – design strength ρ _r = 215N/mm ² d/t Stiffener spacing ratio a/d	5) Grade \$460 steel, web thickness ≤ 16mm – design strength ρ_{ν} = 460N/mm ² d/t Stiffener spacing ratio a/d								
	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞								
	55 129	55 276								
	80 129 129 129 129 129 129 129 129 129 129	80 276 276 276 283 251 241 228 219 213 208 204 198 195 187 85 276 276 276 288 254 241 230 217 207 200 195 192 188 183 176 90 276 276 276 280 245 231 219 205 195 189 184 181 176 173 166 95 276 276 289 251 235 221 208 194 185 179 175 172 167 164 167 100 276 276 261 243 226 211 198 184 176 175 172 167 164 167 100 276 276 261 243 226 211 198 184 176 170 168 163 158								
	105 129 129 129 129 129 125 120 115 111 109 106 105 102 101 97 110 129 129 129 127 122 117 111 107 105 102 101 98 98 92 115 129 129 129 124 118 113 108 104 101 98 97 94 92 88 120 129 129 127 121 115 110 104 100 97 94 92 90 88 85 125 129 129 124 118 112 107 100 96 92 90 89 86 85 81	105 276 276 254 234 216 201 188 176 187 162 158 155 151 148 142 110 276 269 246 226 207 191 180 188 180 155 151 148 144 141 138 115 276 283 239 217 198 183 172 180 153 148 144 142 138 135 130 120 276 256 231 208 189 176 165 154 147 142 138 136 132 130 125 125 276 250 224 200 182 169 158 148 141 136 133 130 127 124 120								
	130 129 129 129 122 115 109 103 97 92 89 87 85 83 81 78 135 129 129 127 119 112 105 100 93 89 88 84 82 80 78 75 140 129 129 125 118 109 102 96 90 85 83 81 79 77 75 73 145 129 129 122 114 106 99 93 86 82 80 78 76 74 73 70 150 129 129 120 111 103 96 90 84 80 77 75 74 72 70 68	130 273 243 216 192 175 162 152 142 135 131 128 125 122 120 115 135 288 237 208 185 168 165 147 137 130 128 123 121 117 115 111 140 262 230 201 178 182 150 141 132 128 123 121 117 115 111 107 145 257 224 194 172 157 145 136 127 121 117 114 112 109 107 103 150 252 217 187 167 152 140 132 123 117 113 111 109 105 104 100								
	155 129 128 117 108 100 92 87 81 77 74 73 71 69 68 65 160 129 126 115 105 97 90 84 78 75 72 70 69 67 66 63 165 129 124 113 103 94 87 81 76 72 70 68 67 65 64 61 170 129 122 110 100 91 84 79 74 70 68 65 63 62 60 175 129 120 108 97 88 82 77 72 68 66 64 63 61 60 58	155 246 210 181 161 147 136 128 119 113 110 107 105 102 100 96 160 241 204 176 156 142 132 124 115 110 106 104 102 99 97 93 165 235 197 170 151 138 128 120 112 107 103 109 99 94 91 170 230 192 165 147 134 124 116 108 103 100 98 98 93 92 88 175 225 188 160 143 130 120 113 105 100 97 95 93 90 89 85								
	180 129 117 105 94 88 80 75 70 68 64 63 61 60 59 56 185 129 115 103 92 84 77 73 68 64 62 61 60 58 57 55 190 127 113 100 89 81 75 71 66 63 61 59 58 56 55 53 195 126 111 98 87 79 73 69 64 61 59 58 57 55 54 52 200 124 109 96 85 77 72 67 63 60 58 56 55 54 53 51	180 219 181 156 139 126 117 110 102 98 94 92 91 88 88 83 185 214 176 152 135 123 114 107 100 95 92 90 88 86 84 81 190 208 172 148 131 120 111 104 97 93 89 87 88 88 88 82 79 195 203 167 144 128 117 108 101 95 90 87 85 84 81 80 77 200 198 163 140 125 114 105 99 92 88 85 83 81 77 78 75								
	205 122 107 93 83 75 70 65 61 58 56 55 54 52 51 49 210 120 105 91 81 74 68 64 60 57 55 54 52 51 50 48 215 119 103 89 79 72 66 62 58 55 54 52 51 50 49 47 220 117 101 87 77 70 65 61 57 54 52 51 50 49 48 48 225 115 99 85 75 69 64 60 56 53 51 50 49 48 47	205 193 159 137 122 111 103 96 90 86 83 81 79 77 76 73 210 188 155 134 119 108 100 94 88 84 81 79 78 75 74 71 215 184 152 131 116 106 98 92 86 82 79 77 76 74 72 70 220 180 148 128 114 103 96 90 84 80 77 75 74 72 71 68 225 176 145 125 111 101 94 88 82 78 76 74 72 70 69 68								
	230 113 97 83 74 67 62 58 54 52 50 49 48 47 46 44 235 112 94 81 72 66 61 57 53 51 49 48 47 46 45 43 240 110 92 79 71 64 60 56 52 50 48 47 46 45 44 42 245 108 90 78 69 63 58 55 51 49 47 46 45 44 43 41 250 107 89 76 68 62 57 54 50 48 46 45 44 43 41	230 172 142 122 109 99 92 88 80 76 74 72 71 69 68 65 235 188 139 120 106 97 90 84 78 75 72 71 69 68 65 240 165 138 117 104 95 88 82 77 73 71 69 68 66 65 62 245 161 133 115 102 93 86 81 75 72 69 68 67 65 64 61 250 158 130 112 100 91 84 79 74 70 68 66 65 63 62 60								
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.								

 $^{^{38}}$ Revision of Table 8.5e - Shear Buckling Strength for S460 steel with web thickness $\leq 16 mm.$

Item	Current version Amendments
39. Table 8.5f ³⁹	Table 8.5f - Shear buckling strength q_w (N/mm²) of a web (for 16mm ≤ t ≤ 40mm) 6) Grade Q235 steel, web thickness >16mm ≤ 40mm - design strength p_r = 205N/mm² d/t
	130 123 123 123 118 111 105 100 94 90 87 85 83 81 79 76 73 115 108 102 97 91 88 84 82 80 78 76 73 140 254 224 190 174 159 147 138 129 123 119 116 114 111 109 100 145 123 123 118 110 103 96 91 84 80 78 76 75 72 71 88 150 244 212 183 163 142 133 124 119 115 112 110 107 105 103 101 97 150 123 123 118 110 103 96 87 87 75 73 71 70 69 68 165 123 123 114 105 97 90 85 79 75 73 71 70 68 67 64 68 65 63 62 61 58 170 123 123 118 107 97 88 87 77 72 69 68 66 63 62 61 58 170 123 123 118 107 97 88 87 77 78 64 68 65 63 61 60 58 57 56 54 52 198 185 123 112 100 98 87 79 74 69 64 61 59 58 57 55 54 52 198 185 123 114 100 98 87 79 74 69 64 61 59 58 57 55 54 52 199 183 141 100 99 99 88 88 27 78 77 72 69 64 61 59 58 58 57 55 54 52 199 183 141 100 99 99 89 88 88 77 77 78 64 61 60 58 57 55 54 52 199 183 141 100 99 99 88 88 88 77 77 78 68 68 67 78 68 67 65 68 67 68 68 67 68 68 67 68 68 67 68 68 68 68 68 68 68 68 68 68 68 68 68
	200 120 108 93 83 75 70 86 81 58 56 55 54 52 51 49 205 118 104 91 81 74 88 84 84 81 70 78 76 77 70 210 118 102 89 70 72 86 86 85 54 52 51 50 49 48 48 46 82 113 98 85 75 68 83 80 85 54 55 55 50 49 48 48 46 84 47 45 225 112 98 83 74 67 82 58 54 52 50 49 48 48 46 84 44 42 235 108 92 79 70 86 61 57 53 51 49 48 47 46 45 44 43 42 24 107 89 77 70 78 80 30 80 55 52 49 48 47 46 45 44 43 42 40 255 104 87 74 66 80 56 55 49 48 45 44 43 42 40 255 104 87 74 66 80 56 55 44 44 43 42 40 255 104 87 74 86 80 56 55 52 49 48 45 44 43 42 40 255 104 87 74 86 80 56 52 49 48 45 44 43 42 40 255 104 87 74 86 80 56 52 49 48 45 44 43 42 40 255 104 87 74 86 80 55 52 50 49 48 44 43 42 40 255 104 87 74 86 80 56 52 49 48 45 44 43 42 40 255 104 87 74 86 80 56 52 49 48 45 44 43 42 40 255 104 87 74 86 80 56 52 49 48 45 44 43 42 40 255 104 87 74 86 80 56 52 49 48 45 44 43 42 40 255 105 88 76 88 81 67 53 50 57 53 50 47 46 45 44 43 41 39 20 50 50 50 50 50 50 50 50 50 50 50 50 50

 $^{^{39}\,}$ Revision of Table 8.5f - Shear Buckling Strength for S460 steel with web thickness >16mm \leq 40mm.

Item	Current version Amendments
40. Table 8.5g ⁴⁰	Table 8.5g - Shear buckling strength q _w (N/mm²) of a web (for t ≤16mm) Table 8.5g - Shear buckling strength q _w (N/mm²) of a web (for t ≤50mm)
	7) Grade Q345 steel, web thickness ≤16mm – design strength ρ_y = 310N/mm² d/t Stiffener spacing ratio a/d Stiffener spacing ratio a/d T) Grade S550 steel, web thickness ≤50mm – design strength ρ_y = 550N/mm²
	0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 \(\infty \)
	55 186 186 186 186 186 186 188 186 186 186
	80 188 188 188 188 188 188 188 188 188 1
	105 186 186 188 179 169 160 153 144 137 132 129 127 123 121 116 110 188 188 174 184 155 147 137 131 128 123 121 118 116 111 108 108 181 189 189 181 169 159 149 141 131 125 128 188 188 177 185 158 188 181 169 159 149 141 131 125 121 118 116 112 111 108 108 102 125 188 188 173 180 148 138 129 121 115 111 108 107 103 102 98 125 318 280 246 219 199 184 173 161 164 149 145 143 138 133 131 135 131
	130 188 184 169 155 143 133 124 116 111 107 104 102 99 98 94 90 135 188 180 165 151 138 128 120 112 108 103 100 99 96 94 90 135 188 180 180 180 180 180 180 180 180 180
	155 186 168 148 132 120 111 104 97 93 90 87 86 83 82 79 160 183 162 144 128 116 108 101 94 90 87 85 83 81 79 76 185 180 159 139 124 113 104 98 91 87 84 82 81 78 77 74 150 177 155 135 120 109 101 95 89 84 82 80 78 76 75 72 170 175 174 151 131 117 108 98 92 88 82 79 77 76 74 73 70 175 248 204 175 156 142 132 124 115 110 108 104 102 99 97 83
	180 171 148 128 113 103 96 90 84 80 77 75 74 72 70 68 185 185 188 144 124 110 100 93 87 81 78 75 73 72 70 69 66 185 190 165 140 121 107 98 91 85 79 75 73 71 70 68 67 64 195 195 195 182 137 118 105 95 88 83 77 74 71 69 68 66 65 62 200 159 133 115 102 93 86 81 75 72 69 68 66 64 63 61 20 120 120 178 154 137 124 115 108 101 96 93 91 89 87 85 82
	205 156 130 112 100 91 84 79 73 70 68 66 65 63 62 59 210 153 127 109 97 88 82 77 72 68 66 64 63 61 60 58 210 153 127 109 97 88 82 77 72 68 66 64 63 61 60 58 210 155 150 124 107 95 88 80 75 70 67 64 63 62 60 59 57 220 147 121 104 93 84 78 73 68 65 63 61 60 59 57 56 54 225 144 118 102 91 82 76 72 67 64 62 60 59 57 56 54 225 192 158 136 121 110 102 96 90 85 83 81 79 77 76 73
	230 141 116 100 89 81 75 70 65 62 60 59 58 56 55 53 235 138 113 98 87 79 73 69 64 61 59 57 56 55 54 53 245 132 109 94 83 76 70 63 60 61 58 56 55 54 53 51 250 129 107 92 82 74 69 64 60 57 55 54 53 51 49
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3. Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

 $^{^{40}\,}$ Revision of Table 8.5g - Shear Buckling Strength for S550 steel with web thickness \leq 50mm.

Item	Current version	Amendments								
41. Table 8.5h ⁴¹	Table 8.5h - Shear buckling strength q_w (N/mm ²) of a web (for 16mm $\leq t \leq$ 35mm)	Table 8.5h - Shear buckling strength q_w (N/mm ²) of a web (for 50mm < $t \le 100$ mm)								
	8) Grade Q345 steel, web thickness >16mm ≤35mm – design strength ρ _γ = 295N/mm²	8) Grade \$550 steel, web thickness >50mm ≤100mm – design strength p _r = 530N/mm²								
	d/t Stiffener spacing ratio a/d 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 ∞	d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞								
	55 177	55 318								
	80 177 177 177 177 177 177 177 176 170 165 162 159 157 154 152 147 85 177 177 177 177 177 178 170 164 159 155 152 150 147 145 140 90 177 177 177 177 177 177 171 165 158 152 149 146 144 140 138 133 95 177 177 177 177 177 178 168 159 152 148 146 142 139 137 133 131 126 100 177 177 177 177 188 161 154 148 142 138 133 130 128 124 119	80 318 318 318 307 291 276 263 247 238 228 223 219 212 209 201 85 318 318 317 297 279 263 250 233 222 215 210 206 200 197 189 90 318 318 282 267 251 238 220 210 203 198 194 189 188 178 178 178 179 170 169 169 100 318 314 288 265 244 226 212 198 189 182 175 170 167 160								
	105 177 177 177 173 163 155 148 140 134 129 126 124 120 118 114 110 177 177 177 188 159 150 143 134 128 123 120 118 115 113 108 115 177 177 175 164 154 145 137 128 122 118 115 113 110 108 104 120 177 177 177 167 155 144 135 128 121 117 113 110 108 105 103 99 125 177 177 167 155 144 135 128 118 112 108 108 104 101 99 95	105 318 306 279 255 233 215 202 188 180 174 170 167 162 159 153 110 318 298 270 244 222 206 193 180 172 166 162 159 154 152 148 115 318 290 290 233 212 197 185 172 164 159 155 148 146 142 140 148 146 142 140 138 177 165 157 152 148 146 142 149 148 145 140 120 316 282 251 223 203 188 177 165 157 152 148 146 142 139 134 125 310 274 241 214 195 181 170 158 151 146 142 140								
	130 177 177 163 151 139 129 121 113 108 104 102 100 97 95 92 135 177 174 159 148 135 124 117 109 104 100 98 98 93 92 88 140 177 170 155 142 130 120 113 105 100 97 94 93 90 89 85 145 177 187 187 187 187 187 187 187 187 187	130 303 266 232 206 188 174 163 152 145 140 137 135 131 128 123 135 296 258 223 199 181 167 157 147 140 135 132 130 126 124 119 140 290 250 215 192 174 161 152 141 135 130 127 125 121 119 115 145 283 242 208 185 168 156 140 136 130 126 123 121 117 115 111 155 150 276 233 201 179 163 151 142 132 126 122 119 117 113 111 107								
	155 177 160 144 129 117 108 102 95 90 87 85 84 81 80 77 160 176 157 140 125 113 105 98 92 87 85 83 81 79 77 74 185 173 154 138 121 110 102 95 89 85 82 80 79 76 75 72 170 170 150 132 117 107 99 93 86 82 80 78 76 74 73 70 175 168 147 128 114 104 96 90 84 80 77 75 74 72 71 68	155 270 226 194 173 157 148 137 128 122 118 115 113 110 108 104 160 263 219 188 168 153 141 133 124 118 114 111 109 106 104 100 165 256 212 183 162 148 137 129 120 114 111 108 106 103 101 97 170 250 206 177 158 144 133 125 116 111 107 105 103 100 98 94 175 243 200 172 153 139 129 121 113 108 104 102 100 97 95 92								
	180 165 144 124 111 101 93 87 82 78 75 73 72 70 69 66 185 162 140 121 108 98 91 85 79 76 73 71 70 68 67 64 190 159 137 118 105 95 88 83 77 74 71 69 68 66 65 63 195 157 134 115 102 93 86 81 75 72 69 68 66 66 64 63 61 200 154 130 112 100 91 84 79 73 70 68 66 65 63 62 59	180 230 194 167 149 136 126 118 110 105 101 99 97 94 93 89 185 230 189 163 145 132 122 115 107 102 99 96 95 92 90 87 190 223 184 159 141 128 119 112 104 99 96 94 92 89 88 84 195 218 179 155 137 125 116 109 101 97 94 91 90 87 88 82 200 212 175 151 134 122 113 108 99 94 91 89 87 85 84 80								
	205 151 127 109 97 88 82 77 72 88 66 64 63 61 60 58 210 148 124 107 95 86 80 75 70 67 64 63 62 60 59 57 215 148 121 104 93 84 78 73 68 65 63 61 60 58 57 55 220 143 118 102 90 82 76 71 67 63 61 60 59 57 56 225 140 115 99 88 80 74 70 65 62 60 59 57 56 55 53	205 207 171 147 131 119 110 104 97 92 89 87 85 83 81 78 210 202 167 144 128 116 108 101 94 90 87 85 83 81 80 76 215 197 163 140 125 114 105 99 92 88 85 83 81 79 78 75 220 193 159 137 122 111 103 97 90 86 83 81 79 77 76 73 225 189 155 134 119 108 100 94 88 84 81 79 78 75 74 71								
	230 137 113 97 88 79 73 68 64 61 59 57 56 55 54 52 235 134 111 95 85 77 71 67 62 59 57 56 55 53 53 50 240 132 108 93 83 75 70 65 61 58 56 55 54 52 245 129 106 91 81 74 68 64 60 57 55 55 45 53 15 50 250 126 104 89 80 72 67 63 59 56 54 53 51 50 49 47	230 185 152 131 117 106 98 92 88 82 79 77 76 74 73 70 235 181 149 128 114 104 98 90 84 80 78 76 74 72 71 88 240 177 146 126 112 102 94 88 82 79 76 74 73 71 70 67 245 173 143 123 109 100 92 87 81 77 74 73 71 10 69 68 66 250 170 140 121 107 98 90 85 79 75 73 71 70 68 67 84								
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3,								

⁴¹ Revision of Table 8.5h - Shear Buckling Strength for S550 steel with web thickness >50mm ≤ 100mm.
- 35 -

Item	Current version	Amendments
42. Table 8.5i ⁴²	Table 8.5i - Shear buckling strength q_w (N/mm²) of a web (for $t \le 16$ mm) 9) Grade Q390 steel, web thickness ≤ 16mm – design strength $\rho_v = 350$ N/mm²	Table 8.5i - Shear buckling strength q_w (N/mm²) of a web (for $t \le 50$ mm)
	d/t Stiffener spacing ratio a/d	9) Grade S690 steel, web thickness ≤ 50mm – design strength p _y = 690N/mm² d/t Stiffener spacing ratio a/d
	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 210 210 210 210 210 210 210 210 210 210 210 210 210 210 60 210 210 210 210 210 210 210 210 210 210 210 210 210 65 210 210 210 210 210 210 210 210 209 208 203 201 198 196 191 70 210 210 210 210 210 210 210 200 201 210 210 210 75 210 210 210 210 210 210 207 199 193 189 188 184 180 178 172 75 76 77 78 78 78 78 78 78	Stiffener spacing ratio ald 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 414 414 414 414 414 414 307 382 385 375 367 380 366 348 343 332 60 414 414 414 413 397 382 365 353 344 337 331 323 318 306 65 414 414 414 490 378 383 344 330 320 313 307 298 293 282 70 414 414 414 400 379 360 343 323 308 297 290 285 277 272 262 75 414 414 411 385 362 341 323 301 287 271
	80 210 210 210 210 210 207 200 191 185 181 178 175 171 168 163 85 210 210 210 210 208 200 192 184 177 172 169 168 162 159 153 90 210 210 210 210 202 193 185 176 169 164 160 158 153 150 144 95 210 210 210 206 196 186 178 168 161 156 152 149 145 142 137 100 210 210 210 201 190 180 171 160 153 148 144 142 138 135 130	80 414 414 397 369 344 322 303 282 269 260 254 249 242 238 229 85 414 414 383 353 357 327 304 285 266 253 245 239 235 228 224 215 90 414 404 389 338 310 287 269 251 239 231 226 222 215 212 203 95 414 392 355 322 283 272 256 238 227 219 214 210 204 201 193 100 414 380 341 306 278 258 242 226 215 208 203 200 194 191 183
	105 210 210 208 195 183 173 164 153 148 141 137 135 131 129 124 110 210 210 203 189 177 168 157 148 139 134 131 129 125 123 118 115 210 210 198 184 171 159 150 139 133 128 125 123 120 118 113 120 210 210 193 178 165 153 143 134 127 123 120 118 115 113 108 125 210 205 188 172 158 148 138 128 122 118 115 113 110 108 104	105 412 368 327 291 265 246 231 215 205 198 194 190 185 182 174 110 402 360 313 278 253 235 220 205 196 189 185 181 176 173 166 115 392 344 299 266 242 224 211 196 187 181 177 174 169 166 161 159 153 120 382 331 287 255 232 215 202 188 179 174 169 166 161 159 153 125 372 319 275 245 223 206 194 181 172 163 160 155 152 146
	130 210 201 183 167 152 141 132 123 117 114 111 109 106 104 100 135 210 197 178 161 146 138 127 119 113 109 107 105 102 100 98 140 210 192 173 155 141 131 123 114 109 105 103 101 98 96 93 145 210 188 168 150 138 126 118 110 105 102 99 98 95 93 89 150 207 184 163 145 132 122 115 107 102 98 96 94 92 90 88	130 363 307 265 235 214 198 186 174 186 160 156 154 149 147 141 135 353 296 255 227 206 191 179 187 180 154 151 148 144 141 136 140 343 285 246 219 199 184 173 161 154 149 145 143 138 134 131 136 145 333 275 237 211 192 178 167 166 149 144 140 138 134 131 126 150 323 266 229 204 186 172 161 151 144 139 135 133 129 127 122
	155 203 179 158 140 127 118 111 103 98 95 93 91 89 87 84 160 200 175 153 136 123 114 107 100 95 92 90 88 86 84 81 165 196 171 148 132 120 111 104 97 92 89 87 86 83 82 79 170 192 166 144 128 116 108 101 94 90 87 85 83 81 79 76 175 189 162 139 124 113 104 98 91 87 84 82 81 78 77 74	155 313 257 222 197 180 166 156 146 139 134 131 129 125 123 118 160 303 249 215 191 174 161 151 141 135 130 127 125 121 119 114 165 294 242 208 185 169 156 147 137 131 126 123 121 117 116 111 170 285 235 202 180 164 152 142 133 127 122 120 117 116 111 112 188 175 277 228 135 202 180 164 152 142 133 127 122 120 117 114 112 108 175 277 228 197 175 159 147 138 129 123
	180 185 158 138 121 110 102 95 89 85 82 80 78 76 75 72 185 182 153 132 117 107 99 93 88 82 80 78 76 74 73 70 190 178 149 128 114 104 96 90 84 80 78 76 74 72 71 88 195 174 145 125 111 101 94 88 82 78 76 74 72 70 69 66 200 171 142 122 108 99 91 88 80 76 74 72 71 69 67 65	180 269 222 191 170 155 143 135 125 120 116 113 111 108 106 102 185 262 216 186 165 151 139 131 122 116 113 110 108 105 103 99 180 285 210 181 161 147 136 127 119 113 110 107 105 102 100 98 185 248 205 176 157 143 322 124 116 110 107 104 102 99 98 94 200 242 200 172 153 139 129 121 113 108 104 102 100 97 95 92
	205 167 138 119 106 96 89 84 78 74 72 70 69 67 66 63 210 164 135 116 103 94 87 82 76 73 70 68 67 65 64 62 215 160 132 113 101 92 85 80 74 71 68 67 66 64 63 60 220 157 129 111 99 90 83 78 73 69 67 65 64 62 61 59 225 153 126 108 96 88 81 76 71 68 65 64 63 61 60 57	205 236 195 188 149 136 126 118 110 105 102 99 97 95 93 89 210 231 190 164 146 133 123 115 108 103 99 97 95 92 91 87 215 225 186 160 142 130 120 113 105 100 97 95 93 90 89 85 220 220 181 156 139 127 117 110 103 98 95 92 91 88 87 83 225 215 177 153 136 124 115 108 100 96 93 90 89 86 85 81
	230 150 123 108 94 88 79 75 89 68 64 62 61 60 59 56 235 148 120 104 92 84 78 73 68 65 63 61 60 59 57 55 240 143 118 102 90 82 76 71 67 63 61 60 59 57 56 54 245 140 116 99 88 80 74 70 65 62 60 59 58 56 55 53 250 138 113 97 87 79 73 69 64 61 59 57 56 55 54 52	230 211 174 150 133 121 112 105 98 94 91 88 87 84 83 80 235 206 170 146 130 118 110 103 98 92 89 86 85 82 81 78 240 202 166 143 127 116 107 101 94 90 87 85 83 81 79 78 245 188 163 140 125 114 105 99 92 88 85 83 81 79 78 75 250 194 160 138 122 111 103 97 90 86 83 81 80 78 76 73
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

⁴² Revision of Table 8.5i - Shear Buckling Strength for S690 steel with web thickness \leq 50mm.

Item	Current version Amendments
43. Table 8.5j ⁴³	Table 8.5; Shear buckling strength g, (Nimm*) of a web (for form of \$35mm) 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 539Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 539Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 539Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 539Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 Grade G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - design strength p, = 509Mmr* 10 G299 teal, web thickness > tform \$15mm - d

 $^{^{43}\,}$ Revision of Table 8.5j - Shear Buckling Strength for S690 steel with web thickness >50mm ≤ 100 mm.

Item	Current version	Amendments
44. Table 8.5k ⁴⁴	Table 8.5k - Shear buckling strength q_w (N/mm ²) of a web (for $t \le 16$ mm) 11) Grade Q420 steel, web thickness ≤ 16 mm – design strength $\rho_y = 380$ N/mm ²	Table 8.5k - Shear buckling strength q_{sr} (N/mm²) of a web (for $t \le 16$ mm) 11) Grade Q235 steel, web thickness ≤ 16 mm – design strength $\rho_{rr} = 215$ N/mm²
	d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞	d/t Stiffener spacing ratio a/d
	55 228	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	80 228 228 228 228 228 229 219 211 202 195 190 187 184 179 176 170 85 228 228 228 228 221 212 203 193 188 181 177 174 169 168 159 90 228 228 228 228 224 214 204 195 185 177 171 167 164 159 157 150 95 228 228 228 229 214 204 195 185 177 171 167 164 159 157 150 165 128 228 228 228 219 207 197 187 178 168 162 158 155 151 148 143 100 228 228 228 227 213 200 189 179 167 159 154 150 148 143 141 135	80 129 129 129 129 129 129 129 129 129 129
	105 228 228 221 206 193 181 171 159 152 147 143 141 138 134 129 110 228 228 216 200 188 174 163 152 145 140 137 134 130 128 123 115 228 228 210 194 179 166 156 145 138 134 131 128 125 122 118 125 228 228 218 181 185 155 153 143 134 127 125 125 125 128 181 198 181 165 153 143 134 127 123 120 118 115 113 108	105 129 129 129 129 129 125 120 115 111 109 108 105 102 101 97 110 129 129 129 127 122 117 111 107 105 102 101 98 98 92 115 129 129 129 129 124 118 113 108 104 101 98 97 94 92 88 120 129 129 127 121 115 110 104 100 97 94 92 98 85 125 129 129 129 124 118 112 107 100 96 92 90 89 85 85
	130 228 213 193 174 158 147 138 128 122 118 116 113 110 108 104 135 228 208 187 168 153 141 133 124 118 114 111 109 106 104 100 140 228 203 181 162 147 136 128 119 114 110 107 105 102 101 97 145 224 198 176 156 142 132 123 115 110 108 104 102 99 97 93 150 220 194 170 151 137 127 119 111 108 103 100 98 95 94 90	130 129 129 129 129 122 115 109 103 97 92 89 87 85 83 81 78 135 129 129 127 119 112 106 100 93 89 86 84 82 80 78 75 140 129 129 125 116 109 102 96 90 85 83 81 79 77 75 73 145 129 129 129 120 111 103 96 90 84 80 77 75 74 72 70 68
	155 215 189 164 148 133 123 115 108 103 99 97 95 92 91 87 180 211 184 159 141 129 119 112 104 99 96 94 92 89 88 84 185 207 179 154 137 125 116 108 101 98 93 91 89 87 85 82 170 203 174 150 133 121 112 105 98 93 90 88 87 84 83 79 175 199 169 145 129 118 109 102 95 91 88 88 88 84 82 80 77	155 129 128 117 108 100 92 87 81 77 74 73 71 69 68 65 160 129 126 115 105 97 90 84 78 75 72 70 69 67 66 63 165 129 124 113 103 94 87 81 76 72 70 68 67 65 64 61 170 129 122 110 100 91 84 79 74 70 68 66 65 63 62 60 175 129 120 108 97 88 82 77 72 68 66 64 63 61 60 58
	180 195 184 141 128 114 108 99 93 88 85 83 82 79 78 75 185 191 180 137 122 111 103 97 90 88 83 81 80 77 76 73 190 187 155 134 119 108 100 94 88 84 81 79 77 75 74 71 195 183 151 130 118 105 98 92 85 81 79 77 75 73 72 89 20 179 148 127 113 103 95 89 83 87 9 77 75 74 71 70 67	180 129 117 105 94 88 80 75 70 68 64 63 61 60 59 58 185 129 115 103 92 84 77 73 68 64 62 61 60 58 57 55 190 127 113 100 89 81 75 71 68 64 62 61 60 58 57 55 53 195 126 111 98 87 79 73 69 64 61 59 58 57 55 54 52 200 124 109 96 85 77 72 67 63 60 58 56 55 54 53 51
	205 175 144 124 110 100 93 87 81 77 75 73 72 70 68 68 68 210 171 141 121 108 98 91 85 79 76 73 71 70 68 67 64 215 167 137 118 105 96 89 83 77 74 71 70 68 66 65 63 220 163 134 118 103 93 87 81 76 72 70 68 67 65 63 62 125 159 131 113 100 91 85 79 74 71 68 67 65 63 62 60	205 122 107 93 83 75 70 65 61 58 56 55 54 52 51 49 210 120 105 91 81 74 88 64 60 57 55 54 53 51 50 48 215 119 103 89 79 72 86 62 58 55 54 52 51 50 49 47 220 117 101 87 77 70 65 61 57 54 52 51 50 49 48 46 225 115 99 85 75 69 64 60 58 53 51 50 49 48 47 45
	230 158 128 110 98 89 83 78 72 69 67 65 64 62 61 59 235 152 128 108 98 87 81 78 71 67 65 64 63 61 60 57 240 149 123 108 94 88 79 74 69 68 64 62 61 59 58 56 245 148 120 104 92 84 78 73 68 65 63 61 60 58 57 55 250 143 118 102 90 82 76 71 67 63 61 60 59 57 56 54	230 113 97 83 74 67 62 58 54 52 50 49 48 47 48 44 235 112 94 81 72 68 61 57 53 51 49 48 47 46 45 43 240 110 92 79 71 64 40 56 52 50 48 47 48 45 44 42 245 108 90 78 69 63 58 55 51 49 47 46 45 44 43 41 250 107 89 76 68 62 57 54 50 48 46 45 44 43 42 40
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

 $^{^{44}\,}$ Revision of Table 8.5k - Shear Buckling Strength for Q235 steel with web thickness $\leq 16 mm.$

Item	Current version Amendments	
45. Table 8.51 ⁴⁵	Table 8.5I - Shear buckling strength q_w (N/mm²) of a web (for 16mm $\leq t \leq$ 35mm) Table 8.5I - Shear buckling strength q_w (N/mm²) of a web (for 16mm $< t \leq$ 40mm)	j
	12) Grade Q420 steel, web thickness >16mm ≤35mm − design strength ρ _y = 360N/mm² 12) Grade Q235 steel, web thickness >16mm ≤40mm − design strength ρ _y = 205N/mm²	
	d/t Stiffener spacing ratio a/d 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0.4 0.5 0.8 0.9 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0.4 0.5 0.8 0.9 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0.4 0.5 0.8 0.9 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0.4 0.5 0.8 0.9 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0.4 0.5 0.8 0.9 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0.4 0.5 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	
	80 216 216 216 216 216 216 216 216 216 216	123 123 123 123 123 120
	80 216 216 216 216 216 217 204 195 189 184 181 178 174 171 185 85 218 218 218 218 218 218 218 218 218 218	116 112 107 103 99
	105 216 216 217 199 187 176 166 155 148 143 139 137 133 131 125 110 126 216 216 207 193 180 189 159 148 141 136 133 131 127 125 120 110 128 128 120 116 111 108 105 103 102 100 98 96 94 115 120 116 117 118 1167 155 184 145 135 125 126 110 123 123 123 123 123 123 123 123 123 123	95 90 86 83 79
	130 218 205 188 189 154 143 134 125 119 115 112 110 107 105 101 135 218 201 181 163 148 138 129 120 115 111 108 108 103 101 97 135 218 201 181 181 183 128 120 112 110 107 104 102 99 88 94 140 218 198 178 178 178 178 178 178 178 178 178 17	76 73 71 68 66
	180 204 178 155 138 125 116 109 101 97 94 91 90 87 88 82 160 123 121 111 102 94 87 82 78 73 70 69 67 68 64	64 62 60 58 57
	180 189 160 138 122 111 103 97 90 86 83 81 80 77 76 73 72 185 123 112 100 90 82 76 71 66 63 61 69 58 57 185 124 119 108 100 94 88 84 81 79 77 75 73 72 69 190 181 151 130 118 105 98 92 85 81 79 77 75 73 72 69 190 174 174 172 113 103 95 89 83 79 77 75 73 72 69 68 68 68 68 124 109 93 83 75 70 68 61 58 56 55 54 53 200 174 144 124 110 100 93 87 81 77 75 73 72 69 68 68 68 120 120 100 93 83 75 70 68 61 58 56 55 54 53 200 120 100 93 83 75 70 68 61 58 56 55 54 52 51	55 53 52 51 49
	205 170 140 121 107 98 90 85 79 75 73 71 70 68 67 64 210 168 137 118 105 95 88 83 77 74 71 69 68 66 65 62 210 169 133 134 115 102 93 88 81 75 72 69 68 67 65 63 62 220 159 131 132 100 91 84 79 74 70 68 66 65 63 62 220 159 131 132 100 91 84 79 74 70 68 66 65 63 62 60 225 155 128 110 98 89 82 77 72 69 68 65 64 62 61 58 65 64 62 61 58 65 64 62 61 68 68 68 68 68 68 68 68 68 68 68 68 68	48 47 48 45 44
	235 148 122 105 94 85 79 74 69 66 64 62 61 59 58 56 240 107 90 78 69 63 58 55 51 48 47 46 44 44 44 24 240 145 120 103 92 83 77 72 67 64 62 61 60 58 57 55 240 107 90 78 69 63 58 55 51 48 47 46 45 44 43	43 42 41 40 39
	Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3. Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	

 $^{^{45}\,}$ Revision of Table 8.51 - Shear Buckling Strength for Q235 steel with web thickness >16mm \leq 40mm.

Item	Current version						A	me	ndı	men	ıts						
46. Table 8.5m ⁴⁶				Table	e 8.5m	- Shea	ar buc	kling s	treng	th q _w (N/mm²) of a	web (f	ior t ≤	16mm)		
				13) Gra	de Q34	15/Q355	steel,	web th	icknes	s ≤16r	nm – d	esign s	trengti	h p _y = :	305N/mr	m²	
		d/t	0.4	0.5	0.8	0.7	0.8	0.0	Stiff	ener sp	acing I	ratio a/o	d 10	20	2.5	3.0	
		55 60	183	3 183 3 183	183 183	183 183	0.0	183 183	183 183	183	183 183	183 183	183 183	183 183	183 183 179	183	183 182
		65 70 75	183 183 183	183 183	183 183	183 183 183	183 183	183 183	183 183 183	183 183 180	183 182 176	183 179	183 177 170	182 175 168	179 172 165	183 178 170 163	174 166 159
		80 85 90 95 100	183 183 183 183 183	183	183 183	183 183 183 183 182	183	183 181 176 170 165	181 175 169 163 158	174 168 162 155 149	169 163 156 150 143	168 159 152 145 139	163 156 149 142 135	161 154 147 140 133	158 150 143 138 129	156 148 141 134 127	151 143 135 128 122
		100 110 110 120 120	183	183 183 183	183 183 180 176 172	177 173 168 163 159	168 163 158 153 147	159 154 148 143 137	152 146 140 134 129	143 137 131 125 120	137 130 124 119 115	132 126 120 115 111	129 123 117 113 108	128 121 115 111 108	123 117 112 107 103	121 115 110 108 101	116 111 108 101 97
		130 130 140 140 150	5 183 0 183 5 183	179 175 172	167 163 159 155 151	154 150 145 140 138	142 137 132 128 123	132 127 123 118 114	124 119 115 111 107	115 111 107 104 100	110 106 102 99 95	108 103 99 95 92	104 100 97 93 90	102 98 95 91 88	99 95 92 89 88	97 94 91 87 84	94 90 87 84 81
		158 180 188 170 178	181 5 178 0 175	161 157 154	147 143 139 135 131	131 127 123 120 116	119 116 112 109 106	104	104 101 98 95 92	97 94 91 88 86	92 89 87 84 82	89 87 84 81 79	87 84 82 79 77	86 83 80 78 76	83 81 78 76 74	82 79 77 75 72	79 76 74 72 70
		180 185 190 190 200	166 163 161	143 140 138	124	113 110 107 104 102	103 100 97 95 93	95 93 90 88 86	89 87 85 83 81	83 81 79 77 75	80 77 75 73 72	77 75 73 71 69	75 73 71 69 68	74 72 70 68 66	72 70 68 66 64	70 68 67 65 63	68 66 64 62 61
		205 210 215 220 225	152 5 149 0 146	123	112 109 108 104 102	99 97 95 92 90	90 88 86 84 82	84 82 80 78 76	79 77 75 73 72	73 71 70 68 67	70 68 67 65 64	68 66 64 63 62	66 64 63 61 60	65 63 62 60 59	63 61 60 59 57	62 60 59 58 56	59 58 57 55 54
		230 230 240 240 250	137	115	99 97 95	88 87 85 83 81	80 79 77 76 74	75 73 71 70 69	70 69 67 66 64	65 64 63 61 60	62 61 60 58 57	60 59 58 57 55	59 57 56 55 54	58 56 55 54 53	58 55 54 53 52	55 54 53 52 51	53 52 51 50 49
		Note	e : For	other	steel gr	ades n	ot cov	ered in	Table	8.5, re	efer to	Append	dix 8.3	I			

 $^{^{46}\,}$ Addition of Table 8.5m - Shear Buckling Strength for Q345/Q355 steel with web thickness $\leq 16 mm.$

Item	Current version	Amendments
47. Table 8.5n ⁴⁷		Table 8.5n - Shear buckling strength q _w (N/mm²) of a web (for 16mm < t ≤ 40mm)
		14) Grade Q345/Q355 steel, web thickness >16mm ≤40mm – design strength p _r = 295N/mm²
		d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞
		56 177 177 177 177 177 177 177 177 177 17
		80 177 177 177 177 177 177 177 177 170 170
		105 177 177 177 173 164 156 149 140 134 130 127 124 121 119 114 110 177 177 177 169 159 151 143 134 128 124 121 119 115 113 109 115 177 177 775 164 154 145 138 128 122 118 116 113 110 108 104 120 177 177 171 180 149 140 132 123 117 113 111 109 106 104 100 125 125 177 177 168 155 145 135 127 118 113 109 106 104 101 100 96
		130 177 177 164 151 140 130 122 114 108 105 102 100 97 98 92 135 177 174 160 147 135 125 117 109 104 101 98 97 94 92 89 140 177 171 158 142 130 120 113 105 101 97 95 93 91 89 86 145 177 168 152 138 126 116 109 102 97 94 92 90 87 88 83 150 177 164 148 134 121 112 106 98 94 91 89 87 84 83 80
		155 177 161 144 129 117 109 102 95 91 88 86 84 82 80 77 160 176 158 140 125 114 105 99 92 88 85 83 82 79 78 75 165 174 154 130 121 110 102 96 89 85 83 81 79 77 76 73 170 171 151 132 118 107 99 93 87 83 80 78 77 75 73 70 175 168 147 129 114 104 96 91 84 80 78 76 75 72 71 68
		180 165 144 125 111 101 94 88 82 78 76 74 72 70 69 67 185 163 141 122 108 98 91 86 80 76 74 72 71 68 67 65 190 160 137 118 105 96 89 83 78 74 72 70 69 67 68 67 68 67 66 63 18 18 72 70 68 67 65 64 61 20 68 67 65 64 61 62 60 63 62 60 63 62 60 60 65 63 62 60
		205 162 127 110 98 89 82 77 72 69 66 65 64 62 61 58 210 149 124 107 95 87 80 75 70 67 65 63 62 60 59 57 215 148 121 105 93 85 78 74 69 65 63 62 61 59 58 56 220 143 119 102 91 83 77 72 67 64 62 60 59 58 56 225 141 116 100 89 81 75 70 68 63 61 59 58 56 55 53
		230 138 113 98 87 79 73 69 64 61 59 58 57 55 54 52 235 135 111 98 85 77 72 67 63 60 58 57 56 54 53 51 240 132 109 94 83 76 70 66 62 59 57 56 54 53 52 50 245 129 107 92 82 74 69 65 60 57 56 54 53 52 51 49 250 127 104 90 80 73 67 63 59 56 54 53 52 51 49 260 127 104 90 80 73 67 63 59 56 54 53 52 51 1 50 48
		Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁴⁷ Addition of Table 8.5n - Shear Buckling Strength for Q345/Q355 steel with web thickness >16mm \le 40mm.

Item	Current version							Am	end	lme	nts						
48. Table 8.50 ⁴⁸				Table	8.50 -	Shear	r buck	ling st	trengti	h q _w (N	\/mm²	of a v	veb (fo	or <i>t</i> ≤1	6mm)		
1				15) G	rade Q	390 ste	eel, wel	b thick	ness≤	16mm			ngth p	y = 345	N/mm²		
		d/t	0.4	0.5	0.6	0.7	0.8	0.9	Stiffe 1.0	1.2	1.4	1.8	1.8	2.0	2.5	3.0	00
		55 60 65 70 75	207 207 207 207 207 207	207 207 207 207 207	207 207 207 207 207	207 207 207 207 207	207 207 207 207 207	207 207 207 207 207	207 207 207 207 207 205	207 207 207 205 197	207 207 207 200 192	207 207 204 198 188	207 207 201 193 185	207 207 200 191 183	207 205 196 187 179	207 203 194 185 177	207 199 190 180 171
		80 85 90 95 100	207 207 207 207 207 207	207 207 207 207 207 207	207 207 207 207 207 207	207 207 207 205 199	207 208 200 194 188	205 198 192 185 178	198 191 184 177 170	190 182 175 167 160	184 176 168 160 152	180 172 163 155 147	176 168 160 151 144	174 165 157 149 141	170 161 152 144 137	168 159 150 142 135	162 153 144 136 129
		105 110 115 120 125	207 207 207 207 207 207	207 207 207 207 207 204	208 202 197 192 187	194 188 182 177 171	182 176 170 164 158	172 165 159 152 146	163 156 149 143 137	152 145 139 133 128	145 138 132 127 122	140 134 128 123 118	137 131 125 120 115	134 128 123 118 113	131 125 119 114 110	128 123 117 112 108	123 118 113 108 104
		130 135 140 145 150	207 207 207 207 207 205	200 195 191 187 183	182 177 172 167 162	168 160 155 149 144	152 146 141 136 131	140 135 130 126 122	132 127 122 118 114	110	117 113 109 105 102	113 109 105 102 98	111 106 103 99 96	109 105 101 97 94	105 102 98 95 91	104 100 96 93 90	100 96 92 89 86
		155 160 165 170 175	201 198 194 191 187	178 174 170 185 181	157 152 147 143 139	140 135 131 127 124	127 123 119 116 113	118 114 111 107 104	104	100 97	98 95 92 90 87	95 92 89 87 84	93 90 87 85 82	91 88 86 83 81	88 86 83 81 78	87 84 82 79 77	84 81 78 78 74
		180 185 190 195 200	184 180 177 173 170	157 153 149 145 141	135 131 128 125 122	120 117 114 111 108	109 106 104 101 98	101 99 96 94 91	95 93 90 88 86	89 86 84 82 80	85 82 80 78 76	82 80 77 76 74	80 78 76 74 72	78 76 74 72 71	76 74 72 70 69	75 73 71 69 67	72 70 68 68 66
		205 210 215 220 225	166 163 159 156 152	138 134 131 128 125	119 116 113 111 108	106 103 101 98 96	96 94 92 90 88	89 87 85 83 81	84 82 80 78 76	78 76 74 73 71	74 73 71 69 68	72 70 68 67 65	70 68 67 65 64	69 67 66 64 63	67 65 64 62 61		63 62 60 59
		230 235 240 245 250	149 146 143 140 137	123 120 118 115 113	106 103 101 99 97	94 92 90 88 87	86 84 82 80 79	79 78 76 74 73	74 73 71 70 69	69 68 67 65 64	66 65 63 62 61	64 63 61 60 59	62 61 60 59 57	61 60 59 58 58	60 58 57 56 55		56 55 54 53 52
		Note :	For o	ther st	eel gra	ides no	ot cove	ered in	Table	8.5, re	efer to	Append	dix 8.3.	<u> </u>			

 $^{^{48}\,}$ Addition of Table 8.5o - Shear Buckling Strength for Q390 steel with web thickness $\leq 16mm.$

Item	Current version	Amendments
49. Table 8.5p ⁴⁹		Table 8.5p - Shear buckling strength q_w (N/mm ²) of a web (for 16mm < $t \le 40$ mm)
		16) Grade Q390 steel, web thickness >16mm ≤40mm – design strength p _r = 330N/mm ² d/t Stiffener spacing ratio a/d
		0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞
		55 198
		80 198 198 198 198 198 198 198 198 192 184 179 175 172 189 186 163 158 85 198 198 198 198 198 192 185 177 171 187 164 161 157 155 149 90 198 198 198 198 198 194 186 179 170 164 169 156 153 149 147 141 95 198 198 198 198 188 180 172 183 157 152 148 145 141 139 133 100 198 198 198 193 183 174 166 156 149 144 141 138 134 132 127
		105 198 198 198 188 177 167 159 149 142 137 134 131 128 126 121 110 198 198 195 182 171 161 152 142 135 131 128 125 122 120 115 115 198 198 190 177 165 155 148 138 125 122 120 117 151 110 120 198 198 188 172 160 149 140 130 124 120 117 115 112 100 105 125 198 197 181 167 154 143 134 125 119 115 112 110 107 105 101
		130 198 193 177 162 148 137 129 120 115 111 108 106 103 101 97 135 198 189 172 156 143 132 124 116 110 107 104 102 99 98 94 140 198 185 167 151 138 127 120 112 108 100 100 99 96 94 90 145 198 181 163 148 133 123 116 108 103 99 97 95 92 91 87 150 198 177 158 141 128 119 112 104 99 96 94 92 89 88 84
		155 195 173 153 138 124 115 108 101 96 93 91 89 86 85 82 180 192 169 149 132 120 112 105 98 93 90 88 86 84 82 79 185 183 165 144 128 117 108 102 95 90 87 85 84 81 80 77 170 185 161 140 124 113 105 99 92 88 85 83 81 79 78 74 175 182 157 136 121 110 102 98 89 85 82 80 79 77 75 72
		180 179 153 132 118 107 99 93 87 83 80 78 77 74 73 70 185 175 149 129 114 104 96 91 84 80 78 76 72 71 68 190 172 145 125 111 101 94 88 82 78 76 74 73 71 69 67 195 169 142 122 108 99 91 88 80 76 74 72 71 69 68 65 200 168 138 119 106 96 89 84 78 74 72 70 69 67 68 63
		205 162 135 116 103 94 87 82 76 73 70 69 67 65 64 62 210 159 131 113 101 92 85 80 74 71 69 67 66 64 63 60 215 156 128 111 98 90 83 73 73 69 67 65 64 62 61 59 220 152 125 108 96 83 81 76 71 68 65 64 63 61 60 58 225 149 123 106 94 88 79 74 69 66 64 62 61 60 59 56
		230 148 120 103 92 84 78 73 88 65 63 61 60 58 57 56 235 143 117 101 90 82 76 71 66 63 61 60 59 57 56 54 240 140 115 99 88 80 74 70 65 62 60 59 58 56 55 53 245 137 113 97 86 79 73 68 64 61 59 57 56 55 54 52 250 134 110 95 85 77 71 67 62 60 58 56 55 54 53
		Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

 $^{^{49}\,}$ Addition of Table 8.5p - Shear Buckling Strength for Q390 steel with web thickness >16mm \leq 40mm.

Item	Current version							A	lme	nd	mei	ıts						
50. Table 8.5q ⁵⁰				,	able	8.5q -	Shear	buck	ling st	rengti	h q _w (I	l/mm²) of a v	veb (fo	or <i>t</i> ≤1	6mm)		
					17) Gr	ade Q	420 ste	el, wel	b thick	ness≤	16mm	– desi	gn stre	ngth p	_y = 375	N/mm²		
			d/t	0.4	0.5	0.6	0.7	0.0	0.0	Stiffe	ener sp	acing I	1.6	10	20	2.5	2.0	
		1	55		225			225	225	225	225	225		225	225	225	225 216	
		1	55 60 65 70 75	225 225 225 225 225 225	225 225 225 225 225	225 225 225 225 225 225	225 225 225 225 225 225	225 225 225 225 225 225	225 225 225 225 225	225 225 225 225 225 218	225 225 225 218 209	225 221 212 203	225 225 217 208 198	225 223 214 205 195	225 221 212 202 192	218 208 198 188	206 196 186	222 211 201 190 180
		40	80 85 90 95 100	225 225 225 225 225 225 225	225 225 225 225 225 225	225 225 225 225 225 225	225 225 224 218 211	225 220 213 208 199	218 210 203 195 188	210 202 194 186 178	201 192 184 175 167	194 185 176 167 159	189 180 171 162 154	188 176 167 158 150	183 173 164 155 147	178 168 159 150 143	176 166 156 148 141	169 159 150 142 135
			105 110 115 120 125	225 225 225 225 225 225	225 225 225 225 221 217	220 214 208 203 197	205 199 192 186 180	192 185 178 171 164	180 173 166 158 152	170 162 155 149 143	159 151 145 139 133	151 144 138 132 127	146 140 133 128 123	143 136 130 125 120	140 134 128 123 118	136 130 124 119 114	134 128 122 117 112	129 123 117 113 108
			130 135 140 145 150	225 225 225 225 222 218	212 207 202 197 192	192 186 180 175 169	174 167 161 156 150	158 152 147 142 137	148 141 138 131 127	137 132 128 123 119	128 123 119 115 111	122 118 113 109 106	118 114 110 106 102	115 111 107 103 100	113 109 105 101 98	110 106 102 99 95	108 104 100 97 94	104 100 96 93 90
			155 160 165 170 175	214 210 208 202 198	188 183 178 173 168	164 158 154 149 145	146 141 137 133 129	132 128 124 121 117	123 119 115 112 109	115 112 108 105 102	107 104 101 98 95	102 99 96 93 91	99 96 93 90 88	97 94 91 88 86	95 92 89 87 84	92 89 87 84 82	91 88 85 83 80	87 84 82 79 77
			180 185 190 195 200		164 159 155 151 147	141 137 133 130 127	125 122 119 116 113	114 111 108 105 103	108 103 100 98 95	99 97 94 92 89	92 90 88 85 83	88 86 84 81 79	85 83 81 79 77	83 81 79 77 75	82 80 77 75 74	79 77 75 73 71	78 76 74 72 70	75 73 71 69 68
			205 210 215 220 225		144 140 137 134 131	124 121 118 115 113	110 107 105 103 100	100 98 95 93 91	93 91 88 86 85	87 85 83 81 79	81 79 77 76 74	77 76 74 72 71	75 73 71 70 68	73 71 70 68 67	72 70 68 67 65	70 68 66 65 63	69 67 65 64 62	66 64 63 61 60
			230 235 240 245 250		128 125 123 120 118	110 108 108 103 101	98 96 94 92 90	89 87 86 84 82	83 81 79 78 76	78 76 74 73 71	72 71 69 68 67	69 68 66 65 63	67 65 64 63 61	65 64 62 61 60	64 63 61 60 59	62 61 60 58 57	61 60 59 57 58	59 57 56 55 54
		N	lote : I	For oth	ner ste	eel gra	des no	ot cove	ered in	Table	8.5, re	efer to a	Append	dix 8.3				

 $^{^{50}\,}$ Addition of Table 8.5q - Shear Buckling Strength for Q420 steel with web thickness $\leq 16mm.$

Item	Current version	Amendments
51. Table 8.5r ⁵¹		Table 8.5r - Shear buckling strength q_w (N/mm ²) of a web (for 16mm < $t \le 40$ mm)
		18) Grade Q420 steel, web thickness >16mm ≤40mm – design strength p _y = 355N/mm ²
		d/t Stiffener spacing ratio a/d
		0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 213
		55 213
		80 213 213 213 213 213 213 209 202 194 187 183 180 177 173 170 164 85 213 213 213 213 211 202 195 188 179 174 171 168 164 161 165 90 213 213 213 213 205 195 187 178 171 160 162 169 165 152 146 96 213 213 213 209 198 189 180 170 163 157 153 151 146 144 138 100 213 213 213 203 192 182 173 162 155 149 146 143 139 137 131
		105 213 213 211 197 185 175 185 147 142 139 136 132 130 125 110 213 223 206 192 179 168 188 147 140 136 133 130 126 124 119 115 213 213 201 188 173 161 151 141 134 130 127 124 121 119 114 120 213 213 195 180 168 154 145 135 129 124 121 119 116 114 109 125 213 208 190 174 160 148 139 130 124 119 117 115 111 109 105
		130 213 204 185 169 154 142 134 125 119 115 112 110 107 105 101 135 213 199 180 183 148 137 129 120 114 111 108 106 103 101 97 140 213 195 175 157 143 132 124 116 110 107 104 102 99 98 94 145 213 190 170 151 138 128 120 112 107 103 101 99 96 94 91 150 209 188 165 146 133 123 116 108 103 100 97 95 93 91 88
		155 206 181 159 142 129 119 112 105 100 96 94 92 90 88 85 160 202 177 154 137 125 116 109 101 97 93 91 89 87 85 82 165 198 173 150 133 121 112 105 98 94 91 88 87 84 83 80 170 195 168 145 129 117 109 102 95 91 88 86 84 82 80 77 175 191 164 141 125 114 106 99 93 88 85 83 82 79 78 75
		180 187 159 137 122 111 103 97 90 86 83 81 80 77 76 73 185 184 155 133 119 108 100 94 88 83 81 79 77 75 74 71 190 180 151 130 115 105 97 91 85 81 79 77 75 73 72 70 185 176 147 127 113 102 95 89 83 79 77 75 73 71 70 67 200 173 143 123 110 100 93 87 81 77 75 73 72 70 68 66
		205 189 140 120 107 97 90 85 79 75 73 71 70 68 67 64 210 165 138 117 104 95 88 83 77 74 71 69 68 66 65 63 215 162 133 115 102 93 88 81 75 72 69 68 67 65 64 61 220 158 130 112 100 91 84 79 74 70 68 66 65 63 62 60 225 155 127 110 98 89 82 77 72 69 66 65 63 62 60 225 155 127 110 98 89 82 77 72 69 66 65 64 62 61 58 </td
		230 151 124 107 95 87 80 76 70 67 65 63 62 60 59 57 235 148 122 105 93 85 79 74 69 66 64 62 61 59 58 56 240 145 119 103 91 83 77 72 67 64 62 61 60 58 57 56 245 142 117 101 90 82 76 71 66 63 61 59 58 57 56 54 52 90 189 115 99 88 80 74 70 65 62 60 58 57 56 55 53
		Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁵¹ Addition of Table 8.5r f- Shear Buckling Strength for Q420 steel with web thickness >16mm \le 40mm.

Item	Current version	Amendments	
52. Table 8.5s ⁵²		Table 8.5s - Shear buckling strength q_w (N/mm ²) of a web (for t :	
		19) Grade Q460 steel, web thickness ≤ 16mm – design strength ρ _ν = 4	10N/mm²
		d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0	2.5 3.0 ∞
		55 248 248 246 246 246 246 246 248 246	8 244 242 236 8 232 230 224 5 221 219 212 4 210 207 200 3 198 195 188
		80 248 248 248 248 248 242 232 233 213 205 200 195 19 85 248 248 248 248 234 224 214 203 195 189 185 18 90 248 248 248 239 226 215 205 193 185 178 174 17 95 248 248 248 232 218 207 198 184 175 169 165 16 100 248 248 241 225 211 198 187 174 166 161 157 15	
		105 248 248 234 218 203 190 178 166 158 153 149 14 110 248 248 228 210 195 181 170 158 151 146 142 14 115 248 242 221 203 187 173 162 151 144 140 138 131 12 120 248 238 215 190 179 166 156 145 138 134 131 12 125 248 231 209 189 172 159 149 139 133 128 125 12	8 142 140 134 0 138 134 128 4 130 128 123 8 124 122 118 3 120 118 113
		130 248 225 202 182 165 153 144 134 128 123 120 11 135 248 220 196 175 159 147 138 129 123 119 116 11 140 241 214 190 168 153 142 133 124 119 115 112 11 145 237 209 183 163 148 137 129 120 114 111 108 10 150 232 203 177 157 143 133 124 116 111 107 104 10	8 115 113 109 4 111 109 105 0 107 105 101 8 103 101 97 3 100 98 94
		155 228 198 171 152 138 128 120 112 107 104 101 98 160 223 192 166 147 134 124 117 109 104 100 98 98 165 219 187 161 143 130 121 113 108 101 97 95 93 170 214 181 158 139 126 117 110 102 98 94 92 99 95 92 90 88 175 210 176 152 135 123 114 107 99 95 92 90 88	96 95 91 9 93 92 88 9 91 89 86 9 88 86 83 8 85 84 81
		180 205 171 147 131 119 110 104 97 92 89 87 85 185 201 166 143 127 116 107 101 94 90 87 85 83 190 198 162 184 124 113 105 98 92 87 84 82 81 195 192 158 136 121 110 102 98 89 85 82 80 76 200 187 154 133 118 107 99 93 87 83 80 78 73	83 82 78 8 81 79 76 79 77 74 9 77 75 72 7 75 73 71
		205 182 150 129 115 105 97 91 85 81 78 76 75 210 178 146 126 112 102 95 89 83 79 76 75 73 215 174 143 123 110 100 92 87 81 77 75 73 73 22 220 170 140 121 107 98 90 85 79 75 73 71 70 68 225 168 137 118 105 95 88 83 77 74 71 70 68	5 73 72 69 5 71 70 67 2 69 68 66 0 68 67 64 5 66 65 63
		230 182 134 115 103 93 88 81 76 72 70 88 67 82 135 159 131 113 100 91 85 79 74 71 68 67 65 62 128 110 98 89 83 78 73 69 67 65 65 62 128 128 108 96 88 81 76 71 68 66 64 63 62 150 149 123 106 94 86 80 75 70 66 64 63 63	65 64 61 6 64 63 60 6 62 61 59 6 61 60 58 2 60 59 56
		Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	

 $^{^{52}\,}$ Addition of Table 8.5s - Shear Buckling Strength for Q460 steel with web thickness $\leq 16 mm.$

Item	Current version							Am	end	mei	nts					
53. Table 8.5t ⁵³				Table	8.5t -	Shear	buckl	ling str	rength	q _w (N	/mm²)	of a w	eb (foi	r 16mn	n < <i>t</i> ≤ 4	Omm)
) Grade	e Q460	steel,	web thi	ickness	s >16m	ım ≤40	mm – c	design	strengt	h p _y = :	390N/mn	²
		d/t	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	acing r	1.6	1.8	2.0	2.5	.0 œ
		55 60	234 234	234 234	234 234	234 234	234 234	234 234	234 234	234 234	234 234	234 233	234 230	234 228	234 2	33 228 22 217
		55 60 65 70 75	234 234 234	234 234 234	234 234 234 234	234 234 234 234 234 234	234 234 234 234 234 234	234 234 234 234 232	234 234 233 224	233 224 215	234 227 218 208	233 223 213 204	234 230 220 210 200	234 228 218 207 197	234 224 214 203 193	233 228 222 217 211 206 201 195 190 183
		80	234 234	234	234	234	233	224	216	206 197	199 189	194	190 180 170	187 177	182	79 172
		80 85 90 95 100	234 234 234	234 234 234	234 234 234 234 232	234 234 230 224 217	233 226 219 211 204	224 216 208 200 192	216 207 199 191 182	188 179 170	180 171	194 184 174 165 157	170 161 153	187 177 167 158 150	182 172 162 153 146	179 172 169 162 159 153 151 145 143 138
		105 110		234 234					174	182	154 147		146			
		110 115 120 125	234 234 234 234	234 233 228 223	226 220 214 208 202	210 204 197 190 184	197 189 182 175 167	184 177 169 162 155	168 158 152 146	154 148 141 138	141 135	149 142 136 130 125	146 139 133 127 122	143 136 130 125 120	139 132 127 121 117	136 131 130 125 125 120 119 115 115 110
				218												
		130 135 140 145 150	234 234 233 228 228	213 207 202 197	196 190 184 179 173	177 170 164 159 153	161 155 150 144 140	149 144 139 134 129	140 135 130 126 121	131 126 121 117 113	125 120 116 112 108	120 116 112 108 104	118 113 109 105 102	115 111 107 103 100	112 108 104 100 97	110 106 106 102 102 98 99 95 96 92
					167				117	110						
		155 180 185 170 175	220 216 212 207 203	187 182 177 172	162 157 152 148	148 144 139 135 131	135 131 127 123 120	125 121 118 114 111	114 110 107 104	106 103 100 97	101 98	101 98 95 92 89	99 95 93 90 87	97 94 91 88 86	94 91 88 86 83	92 89 90 86 87 83 84 81 82 79
		180 185 190 195 200	199 195 191 186 182	167 162 158 154 150	144 140 136 133 129	128 124 121 118 115	116 113 110 107 105	108 105 102 99 97	101 98 96 93 91	94 92 89 87 85	90 88 85 83 81	87 85 82 80 78	85 83 80 78 76	83 81 79 77 75	81 79 77 75 73	80 76 77 74 75 72 73 71 72 69
		205 210		146												
		210 215 220 225	169	143 140 136 133	128 123 120 118 115	112 110 107 105 102	102 100 97 95 93	95 92 90 88 86	89 87 85 83 81	83 81 79 77 75	79 77 75 74 72	78 75 73 71 70	75 73 71 69 68	73 71 70 68 67	71 69 68 66 65	70 67 68 66 67 64 65 63 64 61
				130	112						70					
		230 235 240 245	158 155 152 149	128 125 122	110 108 108	100 98 96 94	91 89 87 85	84 83 81 79 78	79 77 78 74	74 72 71 69	69 67 66	68 67 65 64	66 65 64 62 61	65 64 63 61	63 62 61 59	62 60 61 59 60 57 58 56 57 55
		250	148	120	103	92	84		73	68	55	63		60	58	07 55
		Note	: For o	other st	teel gra	ades n	ot cove	ered in	Table	8.5, re	fer to /	Append	lix 8.3.			

 $^{^{53}}$ Addition of Table 8.5t - Shear Buckling Strength for Q460 steel with web thickness > 16mm \leq 40mm.

Item	Current version	Amendments
54. Table 8.5u ⁵⁴		Table 8.5u - Shear buckling strength q_w (N/mm²) of a web (for t ≤16mm)
		21) Grade Q550 steel, web thickness ≤ 16mm – design strength ρ_{y} = 520N/mm²
		d/t Stiffener spacing ratio a/d
		55 312 312 312 312 312 312 312 312 312 297 294 289 286 279 60 312
		80 312 312 312 303 287 273 260 245 234 226 221 217 210 207 199 85 312 312 312 293 276 280 247 231 220 213 208 204 198 195 187 90 312 312 303 283 264 248 234 218 208 201 196 192 187 184 177 95 312 312 294 272 253 236 221 206 197 190 186 182 177 174 167 100 312 310 285 262 242 224 210 196 187 181 176 173 168 165 159
		105 312 302 278 252 231 213 200 187 178 172 168 165 160 158 151 110 312 294 266 242 220 204 191 178 170 164 160 157 153 160 145 115 312 286 257 231 210 195 183 170 163 157 153 151 144 144 138 120 312 279 248 221 201 187 175 163 156 151 147 144 140 138 132 125 305 271 239 212 193 179 168 157 150 145 141 139 135 132 127
		130 299 263 230 204 186 172 162 151 144 139 136 133 129 127 122 135 292 255 221 197 179 166 168 145 138 134 131 128 123 118 140 288 247 213 190 173 180 150 140 134 129 126 124 120 118 114 145 279 239 206 183 167 154 145 135 129 125 122 119 116 114 110 150 273 231 199 177 161 149 140 131 125 121 118 115 112 110 106
		155 266 224 193 171 156 144 136 126 121 117 114 112 109 107 103 160 260 217 187 166 151 140 131 123 117 113 110 108 105 103 99 165 253 210 181 181 147 138 127 119 113 110 107 105 102 100 96 170 247 204 178 156 142 132 124 115 110 104 102 99 97 94 175 240 198 171 152 138 128 120 112 107 103 101 99 96 95 91
		180 234 192 168 148 134 124 117 109 104 100 98 96 93 92 88 185 228 187 161 144 131 121 114 106 101 98 95 94 91 89 88 190 221 182 157 140 127 118 111 103 98 95 93 91 89 88 185 216 178 153 136 124 115 108 101 99 93 90 89 86 85 82 200 210 173 149 133 121 112 105 98 93 90 88 87 84 83 79
		205 205 169 148 130 118 109 103 98 91 88 86 85 82 81 78 210 200 165 142 128 115 107 100 93 89 86 84 82 80 79 76 215 196 161 139 124 112 104 98 91 87 84 82 81 78 77 74 220 191 157 138 121 110 102 96 89 85 82 80 79 76 75 72 225 187 154 133 118 107 100 93 87 83 80 78 77 75 74 71
		230 183 151 130 115 105 97 91 85 81 79 77 75 73 72 69 235 179 147 127 113 103 95 89 83 80 77 75 74 72 70 68 240 175 144 124 111 101 93 88 82 78 75 74 72 70 69 68 245 172 141 122 108 99 91 86 80 76 74 72 71 69 68 65 250 188 139 119 100 97 90 84 78 75 72 71 69 67 66 64
		Note: For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

 $^{^{54}\,}$ Addition of Table 8.5u - Shear Buckling Strength for Q550 steel with web thickness $\leq 16mm.$

Item	Current version						A	\ me	ndı	nen	ts					
55. Table 8.5v ⁵⁵				Tabl	le 8.5	v - Shea	ar bucl	kling s	trengt	h q _w (N	N/mm²)	of a w	veb (fo	or 16m	ım < <i>t</i> ≤ 4	40mm)
															500N/mr	
		d/1	0.4	0.5	0.6		0.8	0.9	Other	ener sp 1.2	acing r	atio a/d 1.6	1.8	2.0		3.0 ∞
		55 60 65 70 75	30	0 300	30	0 300	300 300 300 300 300 290	300 300 300 289 277	300 300 290 278 266	300 292 279 266 253	298 284 271 257 243	293 279 265 250 236	289 275 260 245 231	288 271 258 242 227	281 268 251 235 220	278 272 263 255 247 239 232 223 216 208
		80 85 90 95	30	0 300	30 30 30 29 28 27	0 285 4 275 6 265			254 242 229 217 208	240 226 214 202 192	229 216 204 193 183	222 209 197 187 177	216 204 192 182 173	212 200 189 179 170	206 194 183	203 195 191 183 180 173 171 164 162 156
		10: 11: 11: 12: 12:	0 30 5 30 0 30	0 286 0 279 0 271	4 26 3 26 9 25 1 24 4 23	1 227 3 217	226 216 206 198 190	191	196 187 179 172 165	183 175 167 160 154	175 167 159 153 147	169 161 154 148 142	165 157 150 144 138	162 154 148 142 138	157 150 143 137 132	155 148 147 142 141 136 135 130 130 125
		13: 13: 14: 14: 15:	5 28 0 27 5 27	4 249 8 242 2 234	3 22 9 21 2 20 4 20 7 19	9 186	182 3 176 3 169 0 163 4 158	169 163 157 151 146	159 153 147 142 137	148 142 137 133 128	141 138 131 126 122	138 131 127 122 118	133 128 124 119 115	131 126 121 117 113	127 122 118 114 110	125 120 120 115 116 111 112 108 108 104
		150 160 160 170 170	0 25 5 24 0 24	4 212 8 206 2 200	3 17	7 158 2 153	144	133	133 129 125 121 118	124 120 117 113 110	118 115 111 108 105	114 111 107 104 101	112 108 105 102 99	110 108 103 100 97	108 103 100 97 94	105 101 101 97 98 94 95 92 93 89
		18 18 19 19 20	5 22 0 21 5 21	7 179 2 174	1 15	8 141 4 137 0 134	128 125 122	122 119 116 113 110	109 108	107 104 101 99 96	102 99 96 94 92	98 96 93 91 89	96 94 91 89 86	94 92 89 87 85	92 89 87 85 82	90 87 88 84 85 82 83 80 81 78
		20 21 21 21 22 22	0 19 5 19 0 18	1 166 6 162 2 158 7 154 3 151	3 14 2 13 3 13 4 13 1 13	3 127 9 124 6 121 3 118 0 116	110	105	101 98 96 94 92	94 92 89 87 85	89 87 85 83 81	86 84 82 81 79	84 82 80 79 77	83 81 79 77 75	80 79 77 75 73	79 76 77 74 75 73 74 71 72 69
		230 230 240 240 240 250	5 17	9 148 6 145 2 142	3 12 5 12 2 12	7 113	101	95 93 92 90 88	90 88 86 84 82	84 82 80 78 77	80 78 76 75 73	77 75 74 72 71	75 74 72 71 69	74 72 71 69 68		71 68 69 66 68 65 66 64 65 62
		Not	e : Fo	other	steel (grades (not cov	ered ir	Table	8.5, re	fer to A	Append	lix 8.3.	I		

⁵⁵ Addition of Table 8.5v - Shear Buckling Strength for Q550 steel with web thickness >16mm \leq 40mm.

Item	Current version						A	Me	endi	mer	ıts						
56. Table 8.5w ⁵⁶		1_		Table	8.5w	- Shea	r buck	ling st	trengti	h q_w (I	N/mm²) of a v	web (f	or <i>t</i> ≤1	16mm)		
		d	04	23) (irade Q	690 ste	eel, wel	b thick	ness≤ Stiffe	16mm	– desig	gn strei	ngth <i>p</i>	_y = 630	N/mm ²		
			0.4	0.5	0.6	0.7	0.8 378	0.9	1.0 376	1.2	1.4	1.6	1.8				∞ 315
		58 68 70 78	378 378 378 378 378	378 378 378	378 378 378 378 378	378 378 375 361	378 371 356 341	371 355 339 323	359 341 324 307	362 344 325 307 288	333 313 294 274	345 325 305 285 265	319 298 278 259	335 314 293 272 254	329 307 285 265 247	325 303 281 260 243	292 269 250 233
		80 88 90 98	378 378 378 378 378 00 378	378 377 367	371 359 347 335 323	347 333 320 306 292	326 311 296 280 266	308 290 274 259 247	290 272 257 244 231	270 254 240 227 216	257 242 229 217 208	249 234 221 209 199	243 228 216 204 194	238 224 212 201 191	231 218 206 195 185	214 202 192	219 208 194 184 175
		10 11 12 12	5 387	335 325 314	311 298 286 274 263	279 266 254 244 234	253 242 231 222 213	235 224 214 205 197	220 210 201 193 185	208 198 188 180 173	198 187 179 171 165	189 181 173 166 159	185 177 169 162 155	182 173 166 159 153	176 168 161 154 148	173 166 158 152 146	167 159 152 146 140
		13 13 14 14	0 324	293 283 272 263 254	253 243 235 227 219	225 217 209 202 195	205 197 190 184 177	190 183 176 170 164	178 171 165 160 154	168 160 154 149 144	158 152 147 142 137	153 147 142 137 133	149 144 139 134 129	147 141 138 132 127	142 137 132 128 123	140 135 130 126 121	135 130 125 121 117
		15 16 17 17	55 298 50 290 55 281 70 272 75 265	246 238 231 224 218	212 205 199 193 188	189 183 177 172 167	172 166 161 157 152	159 154 149 145 141	149 145 140 138 132	139 135 131 127 123	133 129 125 121 118	128 124 121 117 114	125 121 118 114 111	123 119 116 112 109	109	110 107	113 109 108 103 100
		18 18 18 20	0 257 15 250 10 244 15 237 10 231	212 206 201 196 191	183 178 173 169 164	162 158 154 150 146	148 144 140 136 133	137 133 130 126 123	129 125 122 119 116	120 117 114 111 108	114 111 108 106 103	111 108 105 102 99	108 105 102 100 97	106 103 100 98 95	103 100 97 95 93	101 98 96 93 91	97 95 92 90 87
		20 2° 2° 22	05 226 00 220 05 215 20 210 25 206	186 182 177 173 169	160 157 153 149 146	143 139 136 133 130	130 127 124 121 118	120 117 115 112 110	113 110 108 105 103	105 103 100 98 96	100 98 96 94 91	97 95 93 90 88	95 92 90 88 86	93 91 89 87 85	90 88 86 84 82	89 87 85 83 81	85 83 81 80 78
		23 23 24 24 25		166 162	143 140 137 134 131	127 124 122 119 117	116 113 111 109 106	107 105 103 101 99	101 99 96 94 93	94 92 90 88 86	89 88 86 84 82	87 85 83 81 80	84 83 81 79 78	83 81 79 78 76	81 79 77 78 74	79 77	76 74 73 71 70
		No	te : For	other s	teel gra	ades no	ot cove	ered in	Table	8.5, re	efer to /	Append	dix 8.3				

 $^{^{56}~}$ Addition of Table 8.5w - Shear Buckling Strength for Q690 steel with web thickness $\leq 16 mm.$

Item	Current version							Am	end	me	nts						
57. Table 8.5x ⁵⁷				Table	8.5x	- Shea	r buck	ding st	trenati	hα _w (N	\/mm²\	ofaw	eb (fo	or 16mi	n < <i>t</i> ≤	40mr	n)
			2	4) Grad	e Q690	steel,	web th	ickness	s >16m	ım ≤40)mm – c	design :	strengt	th p _y = 0	615N/m	ım²	
		d/t	0.4	0.5	0.6	0.7	0.8	0.9			acing I	ratio a/o	1.8	2.0	2.5	3.0	00
		55 60 65 70 75	369 369 369 369 369	369 369 369 369 369	369 369 369 369 369	369 369 369 368 355	369 369 364 350 335	369 365 349 334 318	369 353 336 319 303	356 338 320 302 284	346 328 309 290 271	339 320 301 281 262	334 314 294 274 256	330 310 290 269 251	323 303 282 261 244	320 298 277 257 240	310 288 266 247 231
		80 85 90 95 100	369 369 369 369 369	369 369 369 360 350	365 353 341 330 318	341 328 315 302 289	321 306 292 277 263	302 287 271 256 244	288 269 254 241 229	267 251 237 224 213	254 239 226 214 203	246 231 218 207 197	240 226 213 202 192	235 222 209 198 188	229 215 203 193 183	225 212 200 189 180	216 203 192 182 173
		105 110 115 120 125	369 369 361 353 344	340 330 320 310 300	308 294 283 271 260	275 263 251 241 231	250 239 229 219 210	232 221 212 203 195	218 208 199 191 183	203 194 185 178 171	194 185 177 169 163	187 179 171 164 157	183 174 167 160 153	179 171 164 157 151	174 166 159 152 146	171 164 158 150 144	165 157 150 144 138
		130 135 140 145 150	338 328 319 311 303	290 279 269 260 251	250 241 232 224 216	222 214 206 199 193	202 195 188 181 175	187 180 174 168 162	176 169 163 158 152	164 158 152 147 142	158 151 145 140 138	151 146 140 138 131	148 142 137 132 128	145 140 135 130 128	141 138 131 128 122	138 133 129 124 120	133 128 123 119 115
		155 160 165 170 175	286 278 269	243 235 228 222 215	209 203 197 191 188	186 181 175 170 165	170 164 159 155 150	157 152 148 143 139	148 143 139 135 131	129	131 127 123 120 116	127 123 119 116 112	124 120 116 113 110	122 118 114 111 108	118 114 111 108 105	116 112 109 106 103	112 108 105 102 99
		180 185 190 195 200	247 241 235	209 204 198 193 188	180 176 171 167 162	152 148	148 142 138 135 131	135 132 128 125 122	127 124 120 117 114	112 109	110 107	109 106 103 101 98	107 104 101 98 96	105 102 99 97 94	102 99 96 94 91	100 97 95 92 90	96 93 91 89 86
		205 210 215 220 225	213	184 179 175 171 167	158 155 151 148 144	141 138 134 131 128	128 125 122 120 117	119 116 113 111 108	112 109 108 104 102	104 102 99 97 95	99 97 95 92 90	96 94 91 89 87	94 91 89 87 85	92 90 88 86 84	89 87 85 83 81	88 86 84 82 80	84 82 80 79 77
		230 235 240 245 250		164 160 157 154 151	141 138	126 123 120 118 116		106 104 101 99 97	99 97 95 93 91	93 91 89 87 85	88 87 85 83 81	85 84 82 80 79	83 82 80 78 77	82 80 78 77 75	80 78 76 75 73	78 77 75 73 72	75 74 72 71 69
		Note	: For	other s	teel gr	ades n	ot cov	ered in	Table	8.5, re	efer to /	Append	lix 8.3.				

 $^{^{57}\,}$ Addition of Table 8.5x - Shear Buckling Strength for Q690 steel with web thickness >16mm \leq 40mm.

Item	Current versi	ion			Amendments			
58. Table 8.7 ⁵⁸	Table 8.7 - Designation of buckling curves for differ	rent section typ	es		Table 8.7 - Designation of buckling curves for differe	ent section type	s	
	Type of section	Maximum thickness	buc	is of kling	Type of section	Maximum thickness (see note1)		is of kling
	Hot-finished structural hollow sections with steel grade > S460 or hot-finished seamless structural hollow sections	(see note1)	x-x a ₀)	a ₀)	Hot-finished structural hollow sections with steel grade≧ S460 or hot-finished seamless structural hollow sections	(see note1)	a ₀)	y-y a ₀)
	Hot-finished structural hollow section ≤ grade S460		a)	a)	Hot-finished structural hollow section ≤ grade S460		a)	a)
	Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)	Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)
	Rolled I-section	≤ 40 mm > 40 mm	a) b)	b) c)	Rolled I-section	≤ 40 mm > 40 mm	a) b)	b) c)
	Rolled H-section	≤ 40 mm	b) c)	c) d)	Rolled H-section	≤ 40 mm > 40 mm	b)	c) d)
	Welded I- or H-section (see note 2)	> 40 mm ≤ 40 mm	b) b)	c) d)	Welded I- or H-section (see note 2)	≤ 40 mm > 40 mm	b) b)	c) d)
1	Rolled I-section with welded flange cover plates	> 40 mm ≤ 40 mm	a)	b)	Rolled I-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	a) b)	b) c)
	with 0.25 < U/B < 0.80 as shown in Figure 8.4) Rolled H-section with welded flange cover plates	> 40 mm ≤ 40 mm	b)	c)	Rolled H-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) c)	c) d)
	with 0.25 < U/B < 0.80 as shown in Figure 8.4) Rolled I or H-section with welded flange cover plates	> 40 mm ≤ 40 mm	b)	d) a)	Rolled I or H-section with welded flange cover plates with U/B ≥ 0.80 as shown in Figure 8.4)	≤ 40 mm ≤ 40 mm	b) c)	a) b)
	with U/B ≥ 0.80 as shown in Figure 8.4) Rolled I or H-section with welded flange cover plates	> 40 mm ≤ 40 mm	b)	b)	Rolled I or H-section with welded flange cover plates with U/B ≤ 0.25 as shown in Figure 8.4)	≤ 40 mm ≤ 40 mm	b) b)	c) d)
	with U/B ≤ 0.25 as shown in Figure 8.4) Welded box section (see note 3)	> 40 mm ≤ 40 mm	b)	d) b)	Welded box section (see note 3)	≤ 40 mm > 40 mm	b) c)	b) c)
	Round, square or flat bar	> 40 mm ≤ 40 mm	c) b)	b)	Round, square or flat bar	≤ 40 mm	b) c)	b) c)
	Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections	> 40 mm	c) Any a	xis: c)	Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections	> 40 mm	-,	axis: c)
	NOTE: 1. For thickness between 40mm and 50mm the value of p _e may thicknesses up to 40mm and over 40mm for the relevant value: 2. For welded I or H-sections with their flanges thermally cut by m machining, for buckling about the y-y axis, strut curve b) may strut curve c) for flanges over 40mm thick. 3. The category "velded box section" includes any box sectior provided that all of the longitudinal welds are near the come longitudinal stiffeners are NOT included in this category. 4. Use of buckling curves based on other recognized design cor material factors and calibrated against Tables 8.8(a _i), (a) to Table 8.8.	of p,. achine without subsylobe in the used for flanges in fabricated from plants of the cross-sections allowing for variables.	equent edge up to 40m ates or rolle tion. Box se	grinding or m thick and d sections, ections with	NOTE: 1. For thickness between 40mm and 50mm the value of p, may thicknesses up to 40mm and over 40mm for the relevant value of p. revelded I or H-sections with their flanges thermally out by m machining, for buckling about the y-y axis, strut curve b) may be curve o) for flanges over 40mm thick. 3. The category "welded box section" includes any box section provided that all of the longitudinal welds are near the corne longitudinal stiffeners are NOT included in this category. 4. Use of buckling curves based on other recognized design cod material factors and calibrated against Tables 8.8(a _i), (a) to it Table 8.8.	of p,. achine without subse used for flanges up fabricated from pla ers of the cross-sect des allowing for varia	equent edge to 40mm thi ates or rolle tion. Box se ation betwee	e grinding or ick and strut ed sections, ections with en load and

⁵⁸ Revision of size of steel plate thickness in Table 8.7 for designation of buckling curve.

Item	Current version	Amendments
59. Table 8.8(b) ⁵⁹	Table 8.8(b) - Design strength ρ_c of compression members 3) Values of ρ_c in N/mm² with λ < 110 for strut curve b Steel grade and design strength ρ_c (N/mm²)	Table 8.8(b) - Design strength p_c of compression members \$275 ~ \$460 stee 3 Values of p_c in N/mm² with $\lambda < 110$ for strut curve b
	λ S275 S355 S460 235 245 255 265 275 315 325 335 345 355 400 410 430 440 480	Steel grade and design strength p, (N/mm²)
	15 235 245 255 265 275 315 325 335 345 355 399 409 428 438 457 20 234 243 253 263 272 310 320 330 339 349 391 401 420 429 448	National Control of the Control of
	25 229 239 248 258 267 304 314 323 332 342 384 393 411 421 439 30 225 234 243 253 262 298 307 316 325 335 375 384 402 411 429 35 220 229 238 247 256 291 300 309 318 327 366 374 392 400 417	235 245 255 265 275 315 325 335 345 355 400 410 430 440 460 15 235 245 255 265 275 315 325 335 345 356 399 409 428 438 457 20 234 243 253 263 272 310 320 330 339 349 349 341 401 420 429 448 25 229 239 248 258 267 304 314 323 332 342 384 383 411 421 439 30 225 234 243 253 262 298 307 316 325 335 375 384 402 411 429 35 220 229 238 247 256 291 300 309 318 327 366 374 382 400 417
	40 216 224 233 241 250 284 293 301 310 318 355 384 380 388 404 42 213 222 231 239 248 281 289 298 306 314 351 359 375 383 399 44 211 220 228 237 245 278 286 294 302 310 346 354 369 377 382 48 209 218 226 234 242 275 283 291 298 306 341 349 364 371 386 48 207 215 223 231 239 271 279 287 294 302 336 343 358 365 379	40 216 224 233 241 250 284 293 301 310 318 355 384 380 388 404 42 213 222 231 239 248 281 289 298 306 314 351 359 375 383 399 44 211 220 228 237 245 278 286 294 302 310 346 354 369 377 392 48 209 218 226 234 242 275 283 291 298 306 341 349 364 371 386
	50 205 213 221 229 237 267 275 283 290 298 330 337 351 358 372 52 203 210 218 226 234 264 271 278 286 293 324 331 344 351 364	48 207 215 223 231 239 271 279 287 294 302 336 343 358 365 379
	54 200 208 215 223 230 260 267 274 281 288 318 325 337 344 366 56 198 205 213 220 227 256 263 269 276 283 312 318 330 336 347 58 195 202 210 217 224 252 258 285 271 278 305 311 322 328 339	50 205 213 221 229 237 267 275 283 290 298 330 337 351 358 372 52 203 210 218 226 234 284 271 278 286 293 324 331 344 351 364 54 200 208 215 223 230 280 267 274 281 288 318 325 337 344 366 56 198 205 213 220 227 256 263 289 276 283 312 318 330 336 347 58 195 202 210 217 224 252 258 265 271 278 305 311 322 328 339
	60 193 200 207 214 221 247 254 260 266 272 298 304 314 320 330 62 190 197 204 210 217 243 249 255 261 266 291 296 306 311 320 64 187 194 200 207 213 238 244 249 255 281 284 289 298 302 311 66 184 191 197 203 210 233 239 244 249 255 276 281 288 294 301 68 181 188 194 200 206 228 233 239 244 249 255 276 281 289 292	80 193 200 207 214 221 247 254 280 286 272 298 304 314 320 330 82 190 197 204 210 217 243 249 255 281 286 291 296 306 311 320 64 187 194 200 207 213 238 244 249 255 261 284 289 288 302 311 86 184 191 197 203 210 233 239 244 249 255 276 281 282 299 294 301 88 181 188 194 200 206 228 233 239 244 249 269 273 281 285 292
	70 178 185 190 196 202 223 228 233 238 242 281 285 272 276 282 72 175 181 187 193 198 218 223 227 232 236 254 257 284 267 273 273 74 172 178 183 189 194 213 217 222 226 230 246 249 255 258 264 78 169 175 180 185 190 208 212 216 220 223 238 241 247 250 255 78 166 171 176 181 186 203 206 210 214 217 231 234 239 241 246	70 178 185 190 196 202 223 228 233 238 242 261 265 272 276 282 72 175 181 187 193 198 218 223 227 232 236 254 257 264 267 273 74 172 178 183 189 194 213 217 222 266 230 246 249 255 258 264 76 169 175 180 185 190 208 212 216 220 223 238 241 247 250 255
	80 163 168 172 177 181 197 201 204 208 211 224 226 231 233 237 82 180 184 189 173 177 192 196 199 202 205 217 219 223 225 229 84 156 181 185 181 185 181 185 181 185 181 185 181 185 181 185 181 181	78
	90 146 150 154 157 161 172 175 177 179 181 190 192 195 196 199 92 143 147 150 153 156 187 170 172 174 176 184 185 188 189 192 94 140 143 147 150 152 162 165 167 169 171 178 179 182 183 185 96 137 140 143 148 148 188 180 162 164 165 172 173 176 177 179 98 134 137 139 142 145 153 155 157 159 160 167 168 170 171 173	90 146 150 154 157 161 172 175 177 179 181 190 190 201 203 200 92 143 147 150 153 156 167 170 172 174 176 181 190 190 195 196 199 199 194 140 143 147 150 152 162 165 167 170 172 174 176 184 185 188 189 192 194 140 143 147 150 152 162 165 167 169 171 178 179 182 183 185 196 137 140 143 146 148 158 160 182 184 165 172 173 176 177 179 188 134 137 139 142 145 153 155 157 159 180 167 168 170 171 173
	100 130 133 136 138 141 149 151 152 154 155 161 162 164 165 167 102 127 130 132 135 137 145 148 149 151 158 157 159 160 162 104 124 127 129 131 133 141 142 144 145 146 151 152 154 155 166 106 121 124 126 128 130 137 138 139 141 142 147 148 149 150 150 151 108 118 121 123 125 126 133 134 135 137 138 142 143 144 145 147	100 130 133 138 138 141 149 151 152 154 155 181 162 164 165 167 102 127 130 132 135 137 145 146 148 149 151 156 157 159 160 162 104 124 127 129 131 133 141 142 144 145 146 151 152 154 155 166 106 121 124 126 128 130 137 138 139 141 142 147 148 149 150 150 150 150 150
	Note: For other steel grades, refer to Appendix 8.4.	108 118 121 123 125 128 133 134 135 137 138 142 143 144 145 147 Note: For other steel grades, refer to Appendix 8.4.

 $^{^{59}}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(b) for buckling curve b.

Item	Current version	Amendments
60. Table 8.8(b) (cont'd) ⁶⁰	Table 8.8(b) - Design strength p _c of compression members (cont'd) 4) Values of p _c in N/mm² with λ≥110 for strut curve b Steel grade and design strength p, (N/mm²)	Table 8.8(b) - Design strength $p_{\rm c}$ of compression members (cont'd) i) S275 \sim S460 steel
	A	4) Values of p _c in N/mm² with λ≥110 for strut curve b Steel grade and design strength p, (N/mm²)
	110 115 118 120 121 123 129 130 131 133 134 138 139 140 141 142 112 113 115 117 118 120 125 127 128 129 130 134 134 134 136 136 138	A \$375 \$365 \$460 235 245 255 265 275 315 325 335 345 355 400 410 430 440 460
	114 110 112 114 115 117 122 123 124 125 126 130 130 132 132 133 116 107 109 111 112 114 119 120 121 122 122 126 126 128 128 128 129 118 105 106 108 109 111 115 116 117 118 119 122 123 124 125	110 115 118 120 121 123 129 130 131 133 134 138 139 140 141 142 112 113 115 117 118 120 125 127 128 129 130 134 138 139 140 141 142 114 110 112 114 115 117 122 123 124 125 126 130 130 130 132 132 133 116 107 109 111 112 114 119 120 121 122 122 128 128 128 128 129 130 130 130 132 132 133 131 135 105 105 106 108 109 111 115 116 117 118 119 122 123 124 124 125 126 126 128 128 129 138 105 106 106 109 111 115 116 117 118 119 122 123 124 124 125
	120 102 104 105 107 108 112 113 114 115 116 119 119 120 121 122 122 100 101 103 104 105 109 110 111 112 112 115 116 117 117 118 124 97 99 100 101 102 106 107 108 109 109 112 112 113 114 115 126 95 96 98 99 100 103 104 105 106 106 109 109 110 111 111 112 128 93 94 95 96 97 101 101 102 103 103 106 106 106 107 107 108	120 102 104 105 107 108 112 113 114 115 116 119 119 120 121 122 122 100 101 103 104 105 109 110 111 112 112 115 116 117 117 118 124 97 99 100 101 102 106 107 108 109 109 112 112 113 114 115 126 95 96 98 99 100 100 103 104 105 106 107 108 109 109 109 110 111 111
	130 90 92 93 94 95 98 99 99 100 101 103 103 104 105 105 135 85 86 87 88 89 92 93 93 94 94 96 97 97 98 98 140 80 81 82 83 84 86 87 87 88 88 90 90 90 91 91 91 92 145 76 77 78 78 79 81 82 82 83 83 83 83 84 85 85 86 86 150 72 72 73 74 74 76 77 77 78 78 78 79 80 80 80 81	128 93 94 95 96 97 101 101 102 103 103 106 106 107 107 108 130 90 92 93 94 95 98 99 99 100 101 103 103 104 105 105 135 85 86 87 88 89 92 93 94 94 96 97 97 98 98 140 80 81 82 83 84 86 87 87 87 88 88 89 90 90 91 91 91 92
		155 68 60 60 70 70 72 72 73 73 73 75 75 75 76 78 78
	175 55 55 58 58 57 58 58	170 58 58 59 59 60 80 81 81 82 82 83 83 84 84 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85
	180 52 53 53 53 54 55 55 56 56 56 56 56 57 57 57 57 57 57 181 59 185 50 50 50 51 51 51 51 52 52 53 53 53 53 54 54 54 54 54 190 48 48 48 48 49 50 50 50 50 50 50 50 50 51 51 51 51 51 52 195 45 46 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	180 52 53 53 53 54 55 55 55 56 56 56 56 57 57 57 57 57 185 50 50 50 50 51 51 51 51 51 51 52 195 195 195 195 195 195 195 195 195 195
	210 40 40 40 40 41 41 41 41 42 42 42 42 42 43 43 220 38 37 37 37 37 38 38 38 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	210 40 40 40 40 40 41 41 41 41 41 42 42 42 42 42 43 43 43 220 38 37 37 37 37 38 38 38 38 38 39 39 39 39 39 39 29 29 34 34 34 34 34 35 35 35 35 35 35 36 36 36 36 240 31 31 31 31 31 32 32 32 32 32 32 32 32 33 33 33 33 33
	280 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	260 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28
	310 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	310 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20
	Note: For other steel grades, refer to Appendix 8.4.	Note: For other steel grades, refer to Appendix 8.4.

 $^{^{60}}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(b) (Cont'd) for buckling curve b.

Item	Current version				A	mendi	ments		
Table 8.8(b)				Table :	8.8(b) - De	esign stre	ngth p _e of	compres	sion member
(cont'd) ⁶¹				ii) \$55	0 ~ S690 s	steel			
								strut curve p, (N/mm²)	b
			λ	490	\$550 530	550	630	\$690 650	690
			15	486 477	525 515	544	621 609	641 628	679 665
			20 25 30 35	467 456 443	504 491 477	534 522 509 494	595 579 560	613 596 576	650 631 608
		4 4	40 42 44 46 48	428 422 415	460 452 444 438 427	476 467 459	537 526 514	551 540 528 514 500	580 567 553 538 522
				408 400	436 427	449 440	502 489	514 500	
		10 mg	50 52 54 56 58	391 383 373 364 354	417 407 398 385 373	429 418 408 394 382	475 460 445 429 414	485 470 454 437	505 488 470 452 434
								421 404	418
		6	60 62 64 66 68	344 333 323 312 302	361 349 337 326 314	369 357 344 332 319	398 382 367 352 337	404 388 372 356 341	398 381 364 348
			70 72 74 76 78	292 281 271 262 252	302 291 280 270 259	307 295 284 273 263	323 310 297 285 273	327 313 300 287 275	333 319 305 292 279
		60 60 60 60 60 60 60 60 60 60 60 60 60 6	80 82 84 86 88	243 234 226 218 210	250 240 231 223 214	252 243 234 225 216	262 251 241 232 223	264 253 243 233 224	268 257 246 236 227
		6 6 6	90 92 94 96 98	202 195 188 182 176	208 199 192 185 179	208 201 193 186 180	214 206 199 191 184	216 207 200 192 185	218 209 201 194 187
			100 102	170 164	172 167	174 168	178 171	179 172	180 174
			104 106 108	159 153 148	161 156 150	162 157 151	165 160 154	166 160 155	168 162 156
		Not	te:F	or other st	eel grades	, refer to A	Appendix 8	.4.	

⁶¹ Addition of design strength for S550 and S690 steel for buckling curve b.

Item	Current version				Amen	dmen	ts	
Table 8.8(b)				8.8(b) - De			compres	sion mem
(cont'd) ⁶²			5) Values	of p _e in N/	mm² with 2	.≥110 for s	strut curve	b
		2		Steel grade S550	and design	n strength	p _y (N/mm²) S690)
		110	490 144	530 146	550 148	630 149	650 150	690 151
		112 114	139 135	141 136	142 137	144 140	145 140	146 141
		116 118	131 127	132 128	133 129	135 131	136 132	137 132
		120				127	127	
		122 124	123 119 116	124 121 117	125 121 118	123 119	124 120	128 124 121
		126 128	112 109	114 110	114 111	116 113	116 113	117 114
		130	106	107	108	109	110	110
		135 140	99 93 87	100 93 87	100 94	102 95	102 95	103 96
		145 150	87 81	87 82	100 94 88 82	89 83	89 83	103 96 89 84
		155				78		1
		160 165	72 68	77 73 68	73 69	74 69	78 74 70	74 70
		170 175	76 72 68 64 61	65 61	77 73 69 65 61	74 69 65 62	66 62	79 74 70 66 62
		180		58		59	59	1
		185 190	58 55 52 49	58 55 52 50	58 55 52 50	59 56 53 50	59 56 53 50	59 56 53 51
		195 200	49 47	50 47	50 47	50 48	50 48	51 48
		210	43	43	43	44	44	44
		220 230	43 39 36 33 31	43 39 36 33 31	43 39 36 33 31	44 40 38 34 31	44 40 37	44 40 37 34 31
		240 250	33 31	33 31	33 31	34 31	34 31	34 31
		260 270	28	28	29	29	29	29
		280	28 26 25 23 21	28 26 25 23 22	29 26 25 23 22	29 27 25 23 22	29 27 25 23 22	29 27 25 23 22
		290 300	23	22	22	22	22	22
		310	20	20	20	20	20	20
		320 330	19 18	19 18	19 18	19 18	19 18	20 19 18 17 16
		340 350	16	17 16	17 16	16	17 16	16
		340 350	17 16 For other st	17 16	17 16	17 16	17 16	

 $^{^{62}}$ Addition of design strength for S550 and S690 steel for buckling curve b.

Item	Current version	Amendments
63. Table 8.8(c) ⁶³	Table 8.8(c) - Design strength p_c of compression members 5) Values of p_c in N/mm² with λ < 110 for strut curve c Steel grade and design strength p_r (N/mm²) λ \$275 \$355 \$460	Table 8.8(c) - Design strength p_c of compression members i) \$275 ~ \$460 steel 5) Values of p_c in N/mm² with λ < 110 for strut curve c Steel grade and design strength p_c (N/mm²)
	235 245 255 265 275 315 325 335 345 355 400 410 430 440 460 15 235 245 255 265 275 315 325 335 345 355 398 408 427 438 455	\(\lambda\) \$275 \$355 \$460 235 245 255 285 275 315 325 335 345 355 400 410 430 440 480
	20 233 242 252 281 271 308 317 326 336 345 387 396 414 424 442 25 252 258 235 246 254 283 299 308 317 326 335 375 384 402 410 428 30 220 228 237 246 255 289 298 307 315 324 383 371 388 396 413 35 213 221 230 238 247 280 288 296 305 313 349 357 374 382 397	235 245 255 265 275 315 325 335 345 355 400 410 430 440 480 480 480 235 245 255 265 275 315 325 335 345 355 398 408 427 436 455 260 233 242 252 261 271 308 317 326 336 345 337 396 414 424 442 25 226 225 245 254 263 299 308 317 326 335 375 338 402 410 428 30 220 228 237 246 255 289 298 307 315 324 363 371 388 396 413 355 213 221 230 238 247 280 288 296 305 313 349 357 374 382 397 375 376 388 386 413 386 387 388 388 413 388 388 413 388 388 413 388 388 413 388 388 413 388 388 388 413 388
	40 206 214 222 230 238 270 278 285 293 301 335 343 388 365 380 42 203 211 219 227 235 266 273 281 288 296 329 337 351 358 373 44 200 208 216 224 231 261 269 276 284 291 323 330 344 351 385 48 197 205 213 220 228 257 284 271 279 286 317 324 337 344 357 48 195 202 209 217 224 253 260 267 274 280 311 317 330 337 349	40 206 214 222 230 238 270 278 285 293 301 335 343 358 365 380 42 203 211 219 227 235 266 273 281 288 296 329 337 351 358 373 44 200 208 216 224 231 261 269 276 284 291 323 330 344 351 365 46 197 205 213 220 228 257 264 271 279 286 317 324 337 344 357 48 195 202 209 217 224 253 260 267 274 280 311 317 330 337 349
	50 192 199 206 213 220 248 255 282 288 275 304 310 323 329 341 52 189 196 203 210 217 244 250 257 283 270 297 303 316 321 333 54 186 193 199 206 213 239 245 252 258 264 291 296 308 313 324 56 183 189 196 202 209 234 240 246 252 258 284 289 300 305 315 58 179 186 192 199 205 229 235 241 247 252 277 282 292 297 306	50 192 199 206 213 220 248 255 262 268 275 304 310 323 329 341 52 189 196 203 210 217 244 250 257 263 270 297 303 315 321 333 54 188 193 199 206 213 239 245 252 258 264 291 296 308 313 324 56 183 189 196 202 209 234 240 246 252 268 284 291 296 308 313 324 56 183 189 196 202 209 234 240 246 252 268 284 289 300 305 315 58 179 186 192 199 205 229 235 241 247 252 277 282 292 297 306
	60 176 183 189 195 201 225 230 236 241 247 270 274 284 289 298 62 173 179 185 191 197 220 225 230 236 241 262 267 276 280 289 64 170 176 182 188 193 215 220 225 230 235 252 260 268 272 280 66 167 173 178 184 189 210 215 220 224 229 248 252 260 264 271 68 164 169 175 180 185 205 210 214 219 223 241 245 252 250 262	60 176 183 189 195 201 225 230 236 241 247 270 274 284 289 298 62 173 179 185 191 197 220 225 230 236 241 262 267 276 280 289 289 284 189 121 280 289
	70 161 166 171 176 181 200 204 209 213 217 234 238 244 248 254 72 157 163 168 172 177 195 199 203 207 211 227 231 237 240 246 74 154 159 184 189 173 190 194 198 202 205 220 223 229 232 238 76 151 156 160 165 169 185 189 183 186 200 214 217 222 225 230 78 148 152 157 161 165 180 184 187 191 194 207 210 215 217 222	70 181 186 171 176 181 200 204 209 213 217 234 238 244 248 254 72 157 163 188 172 177 195 199 203 207 211 227 231 237 240 246 74 154 159 164 169 173 190 194 188 202 205 220 223 229 232 238 76 151 156 180 185 169 185 189 183 198 200 214 217 222 225 230 78 148 152 157 181 185 180 184 187 191 194 207 210 215 217 222
	80 145 149 153 157 161 176 179 182 185 188 201 203 208 210 215 82 142 146 150 154 157 171 174 177 180 183 185 187 201 203 208 210 215 84 139 142 146 150 154 167 169 172 175 178 189 181 191 195 197 201 86 135 139 143 146 150 162 165 188 170 173 183 185 189 190 194 88 132 136 139 143 146 158 160 163 165 168 177 179 183 184 187	80 145 149 153 157 161 176 179 182 185 188 201 203 208 210 215 82 142 146 150 154 157 171 174 177 180 183 195 197 201 203 207 84 139 142 146 150 154 167 169 172 175 178 189 191 195 197 201 86 135 139 143 146 150 162 165 168 170 173 183 185 189 190 194 88 132 138 139 143 146 150 162 165 168 170 173 183 185 189 190 194 88 132 138 139 143 146 158 160 163 165 168 177 179 183 184 187
	90 129 133 136 139 142 153 156 158 161 163 172 173 177 178 181 92 126 130 133 136 139 149 152 154 156 158 166 168 171 173 175 94 124 127 130 133 135 145 145 147 149 151 153 161 163 166 167 170 96 121 124 127 129 132 141 143 145 147 149 156 158 160 162 164 98 118 121 123 126 129 137 139 141 143 145 151 151 153 155 157 159	90 129 133 136 139 142 153 156 158 161 163 172 173 177 178 181 92 126 130 133 136 139 149 152 154 156 158 166 168 171 173 175 175 175 175 175 175 175 175 175 175
	100 115 118 120 123 125 134 135 137 139 140 147 148 151 152 154 102 113 115 118 120 122 130 132 133 136 143 144 146 147 149 104 110 112 115 117 119 128 128 130 131 133 138 139 142 142 144 106 107 110 112 114 116 123 125 126 127 129 134 135 137 138 140 108 105 107 109 111 113 120 121 123 124 125 130 131 133 134 138	100 116 118 120 123 125 134 135 137 139 140 147 148 151 152 154 102 113 115 118 120 122 130 132 133 135 136 143 144 146 147 149 104 110 112 115 117 119 126 128 130 131 133 138 139 142 142 144 106 107 110 112 114 116 123 125 126 127 129 134 135 137 138 140 108 105 107 109 111 113 120 121 123 124 125 130 131 133 134 138
	Note: For other steel grades, refer to Appendix 8.4.	Note : For other steel grades, refer to Appendix 8.4.

 $^{^{63}\,}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(c) for buckling curve c.

Item	Current version	Amendments
64. Table 8.8(c)	Table 8.8(c) - Design strength p _c of compression members 5) Values of p _c in N/mm ^c with λ < 110 for strut curve c	Table 8.8(c) - Design strength ρ_c of compression members (cont'd)
(cont'd) ⁶⁴	Steel grade and design strength p, (N/mm²) λ S275 S355 S460	6) Values of p _e in N/mm² with λ≥110 for strut curve c Steel grade and design strength p, (N/mm²)
	235 245 255 265 275 315 325 335 345 365 400 410 430 440 480 15 235 245 255 265 275 315 325 335 345 355 388 408 427 438 455	λ S275 S355 S460 235 245 255 286 275 315 325 335 345 355 400 410 430 440 480
	20 233 242 252 261 271 308 317 326 336 345 387 386 414 424 442 25 226 235 245 254 263 299 308 317 326 335 375 384 402 410 428 30 220 228 237 246 255 289 298 307 315 324 363 371 388 396 413 356 213 221 230 238 247 280 288 296 305 313 349 367 374 382 397	110 102 104 106 108 110 116 118 119 120 122 128 127 129 130 132 112 100 102 104 106 107 113 115 116 117 118 123 124 125 126 128 114 98 100 101 103 105 110 112 113 114 115 119 120 120 122 123 124 116 95 97 99 101 102 108 109 110 111 112 116 117 118 119 120
	40 206 214 222 230 238 270 278 285 293 301 335 343 358 365 380 42 203 211 219 227 235 266 273 281 288 296 329 337 351 358 373 44 200 208 216 224 231 261 269 276 284 291 323 330 344 351 365 46 197 205 213 220 228 257 264 271 279 286 317 324 337 344 357 48 195 202 209 217 224 253 260 267 274 280 311 317 330 337 349	118 93 95 97 98 100 105 106 107 108 109 113 114 115 116 117
	50 192 199 206 213 220 248 255 262 268 275 304 310 323 329 341 52 189 196 203 210 217 244 250 257 283 270 297 303 315 321 333 54 188 193 199 206 213 239 245 252 258 264 291 296 308 313 324 56 183 189 186 202 209 234 240 246 252 258 264 281 289 300 305 315 58 179 186 192 199 205 229 235 241 247 252 277 282 292 297 306	128 83 84 86 87 88 92 93 94 95 96 98 99 100 100 101
	60 176 183 189 195 201 225 230 236 241 247 270 274 284 289 298 62 173 179 185 191 197 220 225 230 236 241 262 267 276 280 289 64 170 176 182 188 193 215 220 225 230 236 241 262 267 276 280 289 66 167 173 178 184 189 210 215 220 224 229 248 252 260 264 271 68 164 169 175 180 185 205 210 214 219 223 241 245 252 256 262	150 66 66 67 68 68 71 71 72 72 73 76 76 76 76 76 76 76
	70 161 166 171 176 181 200 204 209 213 217 234 238 244 248 254 72 157 163 168 172 177 195 199 203 207 211 227 231 237 240 246 74 154 159 164 169 173 190 194 188 202 205 202 203 209 232 238 76 151 156 160 165 169 185 189 193 196 200 214 217 222 225 230 78 148 152 157 161 165 180 184 187 191 194 207 210 215 217 222	180 48 49 49 50 50 51 52 52 53 54 54 54 55 185 48 48 47 47 48 49 49 50 50 50 51 51 51 52 52 52 190 44 44 45 45 45 45 45 45 45 45 45 45 45
	80 145 149 153 157 161 176 179 182 185 188 201 203 208 210 215 82 142 146 150 154 157 171 174 177 180 183 195 197 201 203 207 84 139 142 146 150 154 167 169 172 175 178 189 191 195 197 201 86 135 139 143 146 150 162 165 168 170 173 183 185 189 190 194 88 132 136 139 143 146 158 160 163 165 168 177 179 183 184 187	210 37 37 38 38 38 38 39 39 39 40 40 40 40 41 41 41 41 220 34 34 34 35 35 35 36 36 36 36 36 36 37 37 37 37 38 38 230 31 32 32 32 32 32 33 33 33 34 34 34 34 34 34 35 240 29 29 29 30 30 30 30 30 31 31 31 31 31 31 31 32 32 32 250 27 27 27 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29
	90 129 133 138 139 142 153 156 158 161 163 172 173 177 178 181 92 126 130 133 136 139 149 152 154 156 158 166 168 171 173 175 175 176 179 179 179 179 179 179 179 179 179 179	280 25 25 28 28 28 28 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27
	100 115 118 120 123 125 134 135 137 139 140 147 148 151 152 154 102 113 115 118 120 122 130 132 133 135 138 143 144 146 147 149 104 110 112 115 117 119 126 128 130 131 133 138 139 142 142 144 106 107 110 112 114 116 123 125 126 127 129 134 135 137 138 140 108 105 107 109 111 113 120 121 123 124 125 130 131 133 134 138	310 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
	Note: For other steel grades, refer to Appendix 8.4.	Note: For other steel grades, refer to Appendix 8.4.

 $^{^{64}\,}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(c) (Cont'd) for buckling curve c.

Item	Current version				Amo	endme	ents	
5. Table 8.8(c)				8.8(c) - De		ngth p _e of	compress	sion mem
(cont'd) ⁶⁵				50 ~ S690 : s of p _∈ in N		L< 110 for	strut curve	C
		λ	-,	Steel grade S550	and design	n strength	p _y (N/mm²) S690)
			490 484	530	550 541	630 617	650	690 673
		15 20 25 30 35	484 470 455 439	522 508 490 472	541 525 507 489	617 598 577 554 529	636 616 595 571	673 652 629 603
			421	452	468		544	573
		40 42 44 48	402 394 385 377 368	431 421 412 402 392	445 435 425 414 403	500 487 474 461 447	513 500 486 472 457	539 524 509 493 477
			359			432	442	480
		50 52 54 56 58	349 340 330 320	381 370 359 348 337	392 380 369 357 345	418 404 389 375	427 412 396 381	443 427 410 394
			310 301					
		60 62 64 66 68	301 291 281 272	328 315 305 294 284	334 322 311 300 289	361 347 333 320 308	387 352 338 325 312	378 362 347 333 319
		70	283 254		278 268			308 293
		70 72 74 76 78	263 254 245 237 228	273 264 254 245 238	278 268 258 249 240	295 284 272 262 252	299 287 276 265 254	308 293 281 270 259
		80	221 213	228	231		244	248
		80 82 84 86 88	206 199 192	228 219 212 204 197	231 222 214 207 199	242 232 224 215 207	244 235 226 217 209	248 239 229 220 212
		90	185 179	190 184	192 188	200 192	201 194 187	204 197
		90 92 94 96 98	173 167 162	177 171 166	179 173 167	186 179 173	187 180 174	189 183 176
		100 102	157 152	160 155	162 158	167 161		170 164
		102 104 106	152 147 142	155 150 145	151 148	161 156 151 146	168 162 157 152 147	164 158 153 148
		108	138	141	142	148	147	148

 $^{^{65}\,}$ Addition of design strength for S550 and S690 steel for buckling curve c.

Current version				Ame	ndme	nts				
		Table 8.8(c) - Design strength p _c of compression members (c								
						strut curve	С			
	λ									
	110	490 134	530 138	550 137	630 141	650 142	690 143			
	112 114 116 118	130 126 122 119	132 128 124 120	133 129 125 121	137 132 128 124	137 133 129 125	139 134 130 126			
	120 122 124 126 128	115 112 109 106 103	117 114 110 107 104	118 114 111 108 105	121 117 114 110 107	121 118 114 111 108	122 119 115 112 109			
	130 135 140 145 150	100 93 88 82 77	101 95 89 83 78	102 95 89 84 79	104 97 91 85 80	105 98 91 86 80	108 98 92 86 81			
	155 180 185 170 175	73 69 65	74 69 66 62 59	74 70 66 62 59	75 71 67 63 60	75 71 67 63 60	76 72 67 64 60			
	180 185 190 195	55 52 50 47	56 53 50 48	56 53 51 48	57 54 51 49		57 54 52 49 47			
	210 220 230 240						43 39 36 33 30			
	260 270 280 290 300	28 26 24 22 21					28 26 24 23 21			
	310 320 330 340	20 18 17 16 16	20 19 17 16 16	20 19 18 17 16	20 19 18 17	20 19 18 17	20 19 18 17			
	Current version	110 112 114 1118 118 112 122 122 122 123 130 135 140 145 145 150 155 170 175 180 185 190 195 195 190 195 195 190 195 195 190 195 195 190 195 195 190 195 195 190 195 195 190 195 195 190 195 195 195 195 195 195 195 195 195 195	Table ii) S5/ 5/ Value 10	Table 8.8(c) - De	Table 8.8(c) - Design stree ii) S550 - S690 steel (con 5) Values of D, in Nimm* with 100	Table 8.8(c) - Design strength p. of ii) S560 ~ S690 steel (cont'd)	Table 8.8(c) - Design strength pc of compress			

 $^{^{66}\,}$ Addition of design strength for S550 and S690 steel for buckling curve c.

 $^{^{67}\,}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(d) for buckling curve d.

Item	Current version	Amendments
Item 68. Table 8.8(d) (cont) ⁶⁸	Table 8.8(d) - Design strength pc of compression members (cont'd) Sylvalues of pc in N/mm' with \(\) \\(\) \	Table 8.8(d) - Design strength p _c of compression members (cont'd) S275 - S460 steel (cont'd)
	300 18 18 19 19 19 19 19 19 19 20 20 20 20 20 20 20 30 310 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	290 19 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21
	Note: For other steel grades, refer to Appendix 8.4.	Note: For other steel grades, refer to Appendix 8.4.

 $^{^{68}}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(d) (Cont'd) for buckling curve d.

Item	Current version				Ame	ndmei	nts		
69. Table 8.8(d) (cont) ⁶⁹			ii) S5	50 ~ S690 s	steel			sion membe	ers
		a.		s of p _c in N/ Steel grade \$550					
		15 20 25 30 35	490 481 461 440 419 397	530 518 496 474 450 426	550 537 514 490 466 440	630 611 584 557 527 498	650 629 602 573 542 509	690 666 637 606 572 536	
		40 42 44 48 48	374 385 356 346 337	400 390 379 369 358	413 402 391 380 368	463 449 435 421 407	475 460 446 431 416	498 482 466 450 434	
		50 52 54 56 58	327 317 308 298 289	347 336 326 315 305	357 345 334 323 312	393 379 366 352 339	402 387 373 359 346	418 403 387 372 357	
		60 62 64 68 68	280 271 262 253 245	294 284 275 265 256	301 291 281 271 261	327 314 302 291 279	332 319 307 295 284	343 329 316 304 291	
		70 72 74 76 78	237 229 221 214 206	247 238 230 222 214	252 243 234 226 218	269 258 249 239 230	273 262 252 242 233	280 269 258 248 238	
		80 82 84 86 88	200 193 186 180 174	207 200 193 186 180	210 203 196 189 183	222 214 206 198 191	224 216 208 201 193	229 220 212 204 197	
		90 92 94 96 98	169 163 158 153 148	174 168 163 157 152	178 170 165 159 154	185 178 172 166 161	188 180 174 168 162	190 183 177 170 185	
		100 102 104 106 108	144 139 135 131 127	148 143 139 134 130	149 145 140 138 132	155 150 145 141 138	157 152 147 142 137	159 154 149 144 139	
		Note:	For other s	teel grades	, refer to A	Appendix 8	.4.		

 $^{^{69}\,}$ Addition of design strength for S550 and S690 steel for buckling curve d.

Item	Current version					Amo	endme	ents		
70. Table 8.8(d) (cont) ⁷⁰					3.8(d) - De 0 ~ S690 s			compres	sion meml	bers (cont'd)
				5) Values S	of p _c in N/i teel grade	mm² with 2	L≥110 for:	strut curve	d)	I
			λ	400	\$550 530	550	630	S690 650	690	
		1 1 1	110 112 114 116 118	123 120 116 113 110	126 123 119 116 112	128 124 120 117 113	132 128 124 121 117	133 129 125 121 118	135 131 127 123 119	
		1 1 1 1	120 122 124 126 128	107 104 101 98 98	109 106 103 100 98	110 107 104 101 99	114 110 107 104 101	114 111 108 105 102	116 112 109 106 103	
		1 1 1	130 135 140 145	93 87 82 77 73	95 89 84 78 74	96 90 84 79 74	99 92 86 81 76	99 93 87 81 77	100 94 88 82 77	
		1 1 1 1 1	155 160 165 170	69 65 61 58 55	70 66 62 59 56	70 66 63 59 56	72 68 64 61 57	72 68 64 61 58	73 69 65 61 58	
		1 1 1 1 1	180 185 190 195	52 50 48 45 43	53 51 48 46 44	53 51 48 46 44	54 52 49 47 45	55 52 49 47 45	55 52 50 47 45	
		2 2 2 2 2 2	210 220 230 240 250	40 36 33 31 29	40 37 34 31 29	40 37 34 31 29	41 37 34 32 29	41 38 34 32 29	41 38 35 32 30	
		l l	260 270 280 290 300	27 25 23 22 20	27 25 23 22 20	27 25 23 22 20	27 25 24 22 21	27 25 24 22 21	27 28 24 22 21	
		3 3 3 3 3	310 320 330 340 350	19 18 17 16 15	19 18 17 16 15	19 18 17 16 15	19 18 17 16 15	19 18 17 16 15	20 18 17 18 15	
		Not	te:For	other ste	eel grades	, refer to A	Appendix 8	.4.		

 $^{^{70}\,}$ Addition of design strength for S550 and S690 steel for buckling curve d.

Item	Current version	Amendments
Item 71. Table 8.8(e) ⁷¹	Values of p, in Nimm³ with λ < 110 for struct ourve s Nimm³ with p, of compression members	

Addition of design strength for Q355 and Q460 steel for buckling curve a; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve a.

Item	Current version			Ame	endments	S							
			Table 8.8(e) - Design strength p_c of compression members (cont'd										
			Valu	ies of pe in N/mm	² with λ≥110 fo	r strut curve a							
				Steel grade	and design stre	ngth (N/mm²)							
		λ	Q235	Q345/Q355	Q390	Q420	Q460						
		110	215	305 140	345 144	375 147	410 149						
		112	125 122	136	140	142	144						
		114	119	136 132	136	138	140						
		116	116	129	132	134	135						
		118	113	125	128	129	131						
		120 122	111 108	121 118	124 120	126 122	127 123						
		124	108	118	117	118	123						
		124	103	111	114	115	116						
		128	100	108	110	112	113						
		130	98 92	105 98	107	108	110 102						
		135	92	98	100	101	102						
		140 145	86 81	92 86	94 88	95 00	95 89						
		150	77	81	82	88 83	84						
		150	"	01	02	65	04						
		155	73	76	77	78	79						
		160	73 69	72	73	73	79 74						
		165	65	68	69	69	70						
		170	62 58	64	65	65	66 62						
		175	58	61	61	62	62						
		180	55	50	58	59	59						
		185	55 53	58 55	55	56	56						
		190	50	52	53	53	53						
		195	48	50	50	50	51						
		200	46	47	48	48	48						
		210 220	42 38	43 39	43 40	44 40	44 40						
		220	35	36	36	36	37						
		230 240	35 32	33	33	34	34						
		250	30	31	31	31	31						
		260	28 26 24	28	29 27 25	29	29						
		270	26	26 25	27	27	27 25						
		280 290	24	25	23	25 23	29 27 25 23 22						
		300	21	22	22	22	22						
		310	20	20	20	20	20						
		320 330	19	19	19	19	19						
		330	18	18	18	18	18						
		340	17 16	17 16	17 16	17 16	17 16						
		Note : 1		el grades, refer			10						

Item	Current version	Amendments
1tem 72. Table 8.8(f) ⁷²	Values of ρ _c in N/mm² with λ < 110 for strut curve b Steel grade and design strength (N/mm²) λ	Table 8.8(f) - Design strength $ρ_c$ of compression members Values of $ρ_c$ in N/mm² with $λ < 110$ for strut curve b Steel grade and design strength (N/mm²) λ Q235 Q345/Q355 Q390 Q420 Q460 Q550 Q690 215 305 345 375 410 520 630 15 215 305 345 375 409 515 621 20 215 301 339 368 401 505 609 25 211 295 332 360 393 494 695 30 207 289 325 353 384 482 579 35 202 283 318 344 374 468 560 40 198 276 310 335 364 452 537 42 196 273 306 331 359 445 526 44 194 270
		70

Addition of design strength for Q355, Q460, Q550 and Q690 steel for buckling curve b; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve b.

Item	Current version				Amer	ıdmeı	nts			
			Tab	le 8.8(f) - De					nbers (cor	nt'd)
				Stee	grade and	design str	ength (N/m	m²)		1
		λ	Q235	Q345/Q355	Q390	Q420	Q460	Q550	Q690	
		110	215 111	305	345	375	410	520 145	630 149	4
		112	108	128 124	133 129	136 132	139 134	140	144	4
		114	108	121	125	128	130	138	140	4
		116 118	103 101	117 114	122 118	124 120	126 123	132 128	135 131	4
		110	101	114	110	120	120	120	131	1
		120 122	99 96	111 108	115 112	117	119	124 120	127 123	1
		122 124	96 94	108 105	112 109	114 111	116 112	120 117	123 119	1
		126	92	103	108	107	109	117	118	1
		128	90	100	103	105	108	110	113	1
		400	00	0.7	400	400	400	407	400	1
		130 135	88 83	97 91	100 94	102 95	103 97	107 100	109 102	1
		140	78	86	88	89 84	90	93	95	1
		145	74	81	83		90 85	93 87	89	1
		150	70	76	78	79	80	82	83	1
		155	66	72	73	74	75	77	78	1
		160 165	63	68	69 65	70 66	71	72 68	74	1
			60	68 64	65	66	71 67	68	74 69	1
		170 175	57 54	61 58	62 59	62 59	63 60	65 61	65 62	1
		1/5	94	56	98	98	60	01	02	4
		180	51	55	56	56	57	58	59	4
		185	49	52	53	53	54	55	56	1
		190 195	47 45	49 47	50 48	51 48	51 49	55 52 50	53 50	1
		200	43	45	46	46	46	47	48	1
										1
		210 220	39 36	41	42 38 35 32	42 38 35 32 30	42 39 36 33	43 39 36 33	44 40	1
		230	33	38 35 32	35	35	36	36	36	1
		230 240	31	32	32	32	33	33	34	
		250	28	30	30	30	30	31	31	1
		260	26	27	28	28	28	28	29	4
		270 280	25 23	26 24	26 24	26 24	26 24	26 25	27 25	4
		280	23	24	24	24	24	25	25	4
		290 300	22 20	22 21	22 21	23 21	23 21	23 23	23 23	4
										4
		310	19	20	20	20	20	20	20	1
		320 330	18 17	18 17	19 17	19 18	19 18	19 18	19 18	1
		340	16	16	17	17	17	17	17	4
		350	15	16	16	16	16	16	16	ı
		Note:	For other	r steel grades	s, refer to A	Appendix	8.4.			

Item	Current version	Amendments
Ttem 73. Table 8.8(g) ⁷³	Table 8.8(g) - Design strength p, of compression members Values of p, in Nimm² with \(\) < 110 for strut curve c Steel grade and design strength (Nimm²) \(\) \(\frac{2255}{2255} \) \(\frac{2345}{2255} \) \(\frac{235}{2255} \) \(\frac{235}	Values of p _c in N/mm² with λ < 110 for strut curve c Steel grade and design strength (N/mm²)
		102 107 128 135 139 144 154 161

Addition of design strength for Q355, Q460, Q550 and Q690 steel for buckling curve c; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve c.

Current version					Amen	ıdmer	ıts			
				es of p_c in	N/mm² wit	հ λ≥110 ք	or strut our		nbers (co	nťd)
	2.		2235 Q3	Steel 345/Q355	grade and Q390	design stre Q420	ngth (N/mr Q460	n²) Q550	Q690	
			215	305 115	345 120	375 124	410	520	630	
	110		98 96	115 112	120	124 120	127 124	136 131	141 137	
	114	14	93	109	114	117	120	127	132	
	110	16	91 89	106 104	111 108	114 111	117 114	124 120	128 124	
										1
	120 121	20	87 85	101 98	105 102	108 105	110 107	117 113	121 117	1
	124	24	84	96	100	102	104	110	114	1
	120		82	93	97	99	102	107	110	
	128	26	80	91	95	97	99	104	107	
	130	30	78 74	89 84	92 87	94 88	96 90	101 94 88 83	104 97	
	130	10	70	84 79	87 81	88	90 85	94	97	1
	148	15	66	74	77	83 78	80	83	85	1
	150	50	63	70	72	74	75	78	80	
	159	55	60	66	68	69	71	73	75	
	160	30	57 54	63 60	65 61	66 62	67 63	73 69 65	71 67	
	169	70	54	60 57	61 58	62 50	63 60	65 62	67 63	1
	179	75	52 49	54	58 55	59 56	57	62 59	60	1
	180	20	47	51	52	53	54	56	57	1
	189		45	49	50	50	51	53	54	
	190	90	43	46	47	48	49	53 50 48	51	
	198		41 39	44 42	45 43	46 44	46 44	48 46	49 46	1
	210 220	10	36 33	39 36 33 30	40 36	40 37	40 37	42 38 35 32 30	42 39 38 33	1
	230	30	31	33	33	34 31	34 31	35	36	
	240	10	29	30	31			32	33	1
	250		27	28	29	29	29	30	30	
	260	30	25	26	27	27	27	28	28	
	270 280	70	25 23 22	24 23	25 23	25 23	25 24	26 24	26 24	
	290	90	20	21 20	22 20	22 20	22 21	22 21	23 21	1
	300	00	19	20	20	20	21	21	21	1
	310	10	18	19	19	19	19	20	20	
	320	20	17	18	18	18	18	19	19	1
	33/ 34/		16 15	17 16	17 16	17 16	17 16	17 16	18 17	
	350		14	15	15	15	15	16	16	l
	Note	e: For	other stee	el grades,	refer to A	ppendix 8	.4.			

Item	Current version	Amendments
74. Table 8.8(h) ⁷⁴	Values of p, in Nimm? with \(\to \) < 1 to for struct curve d \(\frac{1}{2} \)	Table 8.8(h) - Design strength p₂ of compression members Values of p₂ in N/mm² with λ < 110 for strut curve d

Addition of design strength for Q355, Q460, Q550 and Q690 steel for buckling curve d; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve d. - 71 -

Item	Current version	Amendments									
				Tabl	e 8.8(h) - De	esign strei	ngth p _e of	compres	sion mer	nbers (con	ťd)
					Values of p₂ in	n N/mm² wit	th λ≥110 f	or strut cun	ve d		
			λ	Q235	Steel Q345/Q355	grade and Q390	design stre Q420	ength (N/mr Q460	m²) Q550	Q690	
				215	305	345	375	410	550	690	
			110 112	86 84	103 101	109 106	113 110	116 113	128 122	132 128	
			114 116	82 81	98 96	103	107 104	110 107	118 115	124 121	
			118	81 79	96 93	101 98	101	107 104	112	117	
			120 122	77	91	95 93	98 96	101 99	109 106	114	
			122 124	77 76 74 72	91 89 87 85	93 91	96 93	99 96	106 103	110 107	
			126	72	85	89	91	94	100	104	
			128	71	83	86	89	91	97	101	
			130 135	69 66	81 76	84 79	87 81	89 84	95 89	99 92	
			140	62 59	72 68	75 71	77 72	79 74	83 78	86 81	
			145 150	59 56	68 64	71 67	72 68	74 70	78 74	81 76	
			155 160	54 51	61 58	63 60 57	65 61	66 62	69 66	72 68	
			165 170	51 49 47	55	57	61 58	62 59	66 62	64	
			175	45	58 55 52 50	54 51	55 52	56 53	59 56	61 57	
			180	43	47	49	50	51	53	54	
			185	41	45 43	47	47	48	50 48	52 49	
			190 195	39 37	43 41	44 42	45 43	46 44	48 46	49 47	
			200	36	40	41	41	42	44	45	
			210	33 31	36 33	37	38	38	40	41	
			220	31	33	34	35	38 35 33 30	40 37 34 31	37	
			230 240	28 26 25	31 29 27	37 34 32 29 27	38 35 32 30 28	30	31	34 32 29	
			250					28	29		
			260	23 22 20	25 23 22	25 24 22	26 24 22	26 24 23	27 25 23 22 20	27 25 24	
			270 280	20	22	24	22	23	23	25	
			290 300	19 18	20 19	21 19	21 20	21 20	22	22 21	
			310 320	17 16	18 17	18 17	18 17	19 18	19 18	19 18	
			330	15	16	16	16	17	17	17	
			340 350	14 14	15 14	15 15	16 15	16 15	16 15	16 15	
					-11						
			Note:	For other	steel grades	, reter to A	Appendix 8	5.4.			

Item	Current version	Amendments
75. Clause 8.9.3 ⁷⁵		8.9.3 Member buckling resistance – (Alternative to 8.9.2)
		Members which are subjected to combined bending and axial compression should satisfy:
		$\frac{F_{c}}{A_{g}p_{cx}} + k_{xx}\frac{M_{x}}{M_{b}} + k_{xy}\frac{M_{y}}{M_{cy}} \le 1 $ (8.82a)
		$\frac{F_{c}}{A_{g}p_{cy}} + k_{yx}\frac{M_{x}}{M_{b}} + k_{yy}\frac{M_{y}}{M_{cy}} \le 1$ (8.82b)
		where F_c , M_x and M_y are the design values of the compression
		force and the maximum moments about the major (x-x) axis and the minor (y-y) axis along the member, respectively
		M _b is the buckling resistance moment in clause 8.3.5.2 M _{cy} is the moment capacity about the minor axis from clause 8.2.2
		p_{cx} , p_{cy} are the axial strength under column buckling about the major $(x-x)$ axis, and the minor $(y-y)$ axis
		k_{xx} , k_{xy} , k_{yx} , k_{yy} are the interaction factors given in Table 8.10.
		Refer to Table 8.10 for members not susceptible to torsional
		deformations, or refer to Table 8.11 for members susceptible to torsional
		deformation

 $^{^{75}}$ Addition of Clause 8.9.3 for alternative method of member buckling resistance design.

Item	Current version			Amendments	
76. Table 8.10 ⁷⁶		Та	ble 8.10 Intera	ction factors for combined axial c	ompression and bending
				Design a	ssumptions
		Interaction factors	Type of sections	Elastic cross-sectional properties Class 3, Effective cross-sectional properties Class 4	Plastic cross-sectional properties Class 1, Class 2
		k _{xx}	I-sections RHS	$\begin{split} &C_{mx}\left(1+0.6\bar{\lambda}_{x}\frac{F_{\tau}}{P_{cx}}\right)\\ &\leq C_{mx}\left(1+0.6\frac{F_{c}}{P_{cx}}\right) \end{split}$	$\begin{split} &C_{mx}\left(1+\left(\overline{\lambda}_{x}-0.2\right)\frac{F_{c}}{P_{cx}}\right)\\ &\leq C_{mx}\left(1+0.8\frac{F_{c}}{P_{cx}}\right) \end{split}$
		k _{zy}	I-sections RHS	k _{yy}	0.6k _{yy}
		k _{yx}	I-sections RHS	0.8k _{xx}	0.6k _{xx}
		k _{yy}	I-sections	$C_{my} \left(1 + 0.6 \tilde{\lambda}_y \frac{P_c}{P_{cy}} \right)$	$\begin{split} &C_{my}\left(1+\left(2\bar{\lambda}_{y}-0.6\right)\frac{F_{c}}{P_{cy}}\right)\\ &\leq C_{my}\left(1+1.4\frac{F_{c}}{P_{cy}}\right)\\ &C_{my}\left(1+\left(\bar{\lambda}_{y}-0.2\right)\frac{F_{c}}{P_{cy}}\right)\\ &\leq C_{my}\left(1+0.8\frac{F_{c}}{P_{cy}}\right) \end{split}$
		Yer	RHS	$\leq C_{my} \left(1 + 0.6 \frac{F_c}{P_{cy}} \right)$	$\begin{split} &C_{my}\left(1+\left(\bar{\lambda}_{y}-0.2\right)\frac{F_{c}}{P_{cy}}\right)\\ &\leq C_{my}\left(1+0.8\frac{F_{c}}{P_{cy}}\right) \end{split}$
			ctions and rectang may be k _{yx} = 0.	gular hollow sections under axial comp	ression and uniaxial bending M_{χ_2} the
		Note: $\bar{\lambda}_{x} = \frac{\lambda_{x}}{\pi \sqrt{\frac{E}{p_{y}}}}$ $\bar{\lambda}_{y} = \frac{\lambda_{y}}{\pi \sqrt{\frac{E}{p_{y}}}}$			

 $^{^{76}}$ Addition of Table 8.10 for alternative method of member buckling resistance design.

Item	Current version		Amen	dments
77. Table 8.11 ⁷⁷		1	Table 8.11 Interaction factor deformations	s kij for members susceptible to torsional
		Tutuuration	De	sign assumptions
		Interaction factors	Elastic cross-sectional properties Class 3, Effective cross-sectional properties Class 4	Plastic cross-sectional properties Class 1, Class 2
		k _{xx}	k _{yy} from Table 8.10)	k _{yy} from Table 8.10)
		k _{xy}	k _{ya} from Table 8.10)	k _{ya} from Table 8.10)
		k _{yx}	$\begin{split} & \left[1 - \frac{0.05\bar{\lambda}_y}{(C_{mLT} - 0.25)} \frac{F_c}{P_{cy}}\right] \\ \leq & \left[1 - \frac{0.05}{(C_{mLT} - 0.25)} \frac{F_c}{P_{cy}}\right] \end{split}$	$\begin{split} & \left[1 - \frac{0.1\bar{\lambda}_{y}}{\left(C_{mLT} - 0.25\right)} \frac{F_{c}}{P_{cy}}\right] \\ & \geq \left[1 - \frac{0.1}{\left(C_{mLT} - 0.25\right)} \frac{F_{c}}{P_{cy}}\right] \end{split}$
				for $\bar{\lambda}_{y} < 0.4$: $k_{zy} = 0.6 + \bar{\lambda}_{y} \le 1 - \frac{0.1\bar{\lambda}_{y}}{(C_{mLT} - 0.25)} \frac{F_{c}}{P_{cy}}$
		k_{yy}	k _{yy} from Table 8.10	k _{yy} from Table 8.10

 $^{^{77}}$ Addition of Table 8.11 for alternative method of member buckling resistance design.

Item	Current version			Amend	lments	
78. Table 8.12 ⁷⁸		Table 8.	12 Equ Tab	ivalent ui les 8.10 a	niform moment fa and 8.11	actors, C _m in
					C _{mx} and C _n	_{ny} and C _{mLT}
		Moment diagram	Rai	Range	Uniform loading	Concentrated load
		M, wM,	-1≦	ψ≤l	0.6+ 0.4	4ψ ≥ 0.4
		M. M. Aven	$0 \le \alpha_s \le 1$	-1≤ψ≤1	$0.2 + 0.8\alpha_{_{16}} \ge 0.4$	0.2 + 0.8a _s ≥ 0.4
		And And	-1≤a,≤0	0 ≤ ψ ≤1	$0.1 - 0.8\alpha_{_{8}} \ge 0.4$	-0.8a _x ≥ 0.4
		$\alpha_h = M_s / M_h$		-1≤ ψ≤0	$0.1(1-\psi)-0.8\alpha_{_{8}}\geq0.4$	$0.2(-\psi) - 0.8\alpha_x \ge 0.4$
		M, VM,	$0 \le \alpha_h \le 1$	-1≤ψ≤1	0.95 + 0.05α _h	0.90 + 0.10 a _h
		M,	I.	0≤ψ≤1	0.95 + 0.05a _h	0.90 + 0.10 a _h
		$\alpha_h = M_h / M_s$	-1 ≤ α _h ≤ 0	–1≤ ψ≤0	$0.95 + 0.05 \alpha_h (1 + 2 \psi)$	$0.90 + 0.10\alpha_h(1 + 2\psi)$
		should be taken C C _{mx} , C _{my} and C _n diagram between moment factor C _{mx} C _{my}	$t_{\rm mx} = 0.9$ $t_{\rm mLT}$ should	or $C_{my} = 0$ be obtained	ed according to the oints as follows: raced in tion y	

 $^{^{78}}$ Addition of Table 8.12 for alternative method of member buckling resistance design.

Item	Current version		Amendments
79. Page index ⁷⁹	8 DESIGN OF STRUCTURAL MEMBERS. 8.1 GENERAL. 8.2 RESTRAINED BEAMS. 8.2.1 Shear capacity. 8.2.3 Beams with web openings. 8.2.4 Castellated beams. 8.3 LATERAL-TORSIONAL BUCKLING OF BEAMS. 8.3.1 Intermediate and end lateral restraints. 8.3.2 Torsional restraint. 8.3.3 Normal and destabilizing loads. 8.3.4 Effective length for lateral-torsional buckling. 8.3.5 Moment resistance to lateral-torsional buckling. 8.4 PLATE GIRDERS. 8.4.1 Design strength. 8.4.2 Minimum web thickness for serviceability. 8.4.3 Minimum web thickness for seviceability. 8.4.4 Moment capacity of restrained girders. 8.4.5 Effects of axial force. 8.4.6 Shear buckling resistance. 8.4.7 Intermediate transverse web stiffeners. 8.4.8 End anchorage. 8.4.9 Panels with openings. 8.4.10 Web capacity and stiffeners design. 8.4.11 Other types of stiffeners 8.4.12 Connections between web stiffeners and webs. 8.4.13 Connections between web stiffeners and flanges. 8.4.11 Connections between web stiffeners and flanges. 8.5 BUCKLING RESISTANCE MOMENT FOR SINGLE ANGLE MEMBERS. 8.6.1 Tension capacity. 8.6.2 Members with eccentric connections. 8.6.3 Single and double angle, channel and T-sections 8.6.4 Double angle, channel and T-sections with intermediate connections. 8.7.1 Segment length. 8.7.2 Effective length in general. 8.7.3 Restraints. 8.7.4 Slengtemess. 8.7.5 Compression resistance. 8.7.6 Compression resistance. 8.7.7 Eccentric connections in triangulated structures and trusses.		8 DESIGN OF STRUCTURAL MEMBERS
	8.7.9 Effective length of sections in triangulated structures and trusses	127 128 129 129	
	8.10 TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF COMPRESSION MEMBERS	132 132 132 132 135 139	MEMBERS 156

⁷⁹ Revision of page index of Section 8.

Item	Current version	Amendments
80. Table 9.2a ⁸⁰	Table 9.2a - Design strength of fillet welds p_w for BS-EN Standards Steel Electrode classification grade $\frac{35}{35}$ $\frac{42}{42}$ $\frac{50}{50}$ $\frac{50}{120}$ For other types of electrode and/or steel grades: $p_w = 0.5U_0$ but $p_w \le 0.55$ U_s where $U_s = 0.50$	Table 9.2a - Design strength of fillet welds p_w for BS-EN and American Welding Society (AWS) Standards Steel Electrode Grade AWS standards ER60 ER70 ER80 ER90 ER110 EN ISO standards S2 42 50 55 69 S275 220 (220) ^a (220) ^a (220) ^a (220) ^a (220) ^a (220) ^a (250) ^a (250) ^a (250) ^a (250) ^a (250) ^a (250) ^a (280) ^a (280) ^a (280) ^a (320) ^a (320) ^a (320) ^a (380) (380
81. Table 9.2b ⁸¹	Table 9.2b - Design strength of fillet welds p_w for GB or other Standards $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Table 9.2b - Design strength of fillet welds p_w for GB or other Standards Steel grade Electrode classification Design strength N/mm² For other types of electrode and/or steel grades: $p_w = 0.38U_e$ $U_e \geqslant U_s$ Where $U_e \approx 0.38U_e$ $U_e \approx 0.$

Addition of design strength of electrode for S550 and S690 steel and design strength of electrode complying AWS.
 Addition of design strength of electrode for Q355, Q550 and Q690 steel.

Item	Current version	Amendments
82. Clause 9.3.4.4 ⁸²	where the effective net area coefficient \mathcal{K}_e is given by $ \mathcal{K}_e = 1.2 \qquad \qquad \text{for steel of grade S275} \\ = 1.1 \qquad \qquad \text{for steel of grade S355} \\ = 1.0 \qquad \qquad \text{for steel of grade S460} \\ = (U_g/1.2)/p_y \leqslant 1.2 \qquad \text{for steel of other grades} \\ a_n \text{ is the net cross sectional area of the leg deduced for hole openings} \\ a_g \text{ is the gross sectional area without reduction for openings}. $	where the effective net area coefficient K_e is given by $K_e = 1.2$ for steel of grade S275 = 1.1 for steel of grade S355 = 1.0 for steel of grade S460 for steel of grade S550 = 0.80 for steel of grade S690 a _n is the net cross sectional area of the leg deduced for hole openings. a _g is the gross sectional area without reduction for openings.
83. Table 9.5 ⁸³	Table 9.5 - Design shear strength of bolts Bolt grade ISO 4.6 8.8 375 10.9 BS General grade HSFG ≤ M24 \geq M27 350 Higher grade HSFG A307 A325 A490 GB50017 8.8 10.9 Other grades $(U_b \leq 1000 \text{ N/mm}^2)$ Note: U_b is the specified minimum tensile strength of the bolt.	Table 9.5 - Design shear strength of bolts Bolt grade

Addition of coefficient Ke for S550 and S690 steel.
 Addition of bolt grade ISO 6.8 and 12.9; Revision of shear strength of other bolt grade.

Item	Current version	Amendments
84. Table 9.6 ⁸⁴	Table 9.6 - Design bearing strength of boltsBolt gradeDesign bearing strength $ρ_{bb}$ (N/mm²)ISO4.64608.8100010.91300BSGeneral grade HSFG ≤ M241000 $≥$ M27900Higher grade HSFG1300ASTMA307400A325450A490485GB500178.872010.9930Other grades (U_b ≤1000 N/mm²)0.7(U_b + Y_b)Note: U_b is the specified minimum tensile strength of the bolt. Y_b is the specified minimum yield strength of the bolt.	Table 9.6 - Design bearing strength of bolts Bolt grade Design bearing strength p_{hb} (N/mm²) ISO 4.6 6.8 900 8.8 1000 10.9 1300 12.9 1600 BS General grade HSFG ≤ M24 1000 ≥ M27 900 Higher grade HSFG 1300 ASTM A307 400 A325 450 A490 485 GB50017 8.8 720 10.9 930 Other grades ($U_b \le 1000 \text{ N/mm²}$) 0.7($U_b + Y_b$) Note: U_b is the specified minimum tensile strength of the bolt. Y_b is the specified minimum yield strength of the bolt.
85. Clause 9.3.6.1.3 ⁸⁵	p_{os} is bearing strength of connected parts - for steel of grade S275, p_{os} = 460 MPa - for steel of grade S355, p_{os} = 550 MPa - for steel of grade S460, p_{os} = 670 MPa - for steel of other grades, p_{os} = 0.67(U_s + Y_s) (9.20) (refer to section 3 for other grades of steel)	p_{os} is bearing strength of connected parts - for steel of grade S275, p_{os} = 460 MPa - for steel of grade S355, p_{os} = 550 MPa - for steel of grade S460, p_{os} = 670 MPa - for steel of grade S550, p_{os} = 770 MPa - for steel of grade S690, p_{os} = 940 MPa - for steel of other grades, p_{os} = 0.67(U_s + Y_s) (9.20) (refer to section 3 for other grades of steel)

Addition of bolt grade ISO 6.8 and 12.9.
 Addition of bearing strength of connected parts for S550 and S690 steel.

Item	Current version	Amendments
86. Table 9.8 ⁸⁶	Table 9.8 - Design tension strength of bolts Bolt grade Design tension strength $ρ_t$ (N/mm²) ISO 4.6 240 8.8 560 10.9 700 BS General grade HSFG ≤ M24 590 ≥ M27 515 Higher grade HSFG 700 ASTM A307 310 A325 620 A490 780 GB50017 8.8 400 10.9 500 Other grades (U _b ≤ 1000 N/mm²) 0.7 U _b but ≤ Y _b Note: U _b is the specified minimum tensile strength of the bolt. Y _b is the specified minimum yield strength of the bolt.	Table 9.8 - Design tension strength of bolts Bolt grade ISO 4.6 6.8 8.8 8.8 560 10.9 10.9 12.9 BS General grade HSFG ≤ M24 ≥ M27 515 Higher grade HSFG A307 A325 A490 GB50017 8.8 10.9 Other grades (U _b ≤ $\frac{1200}{1200}$ N/mm²) Note: U _b is the specified minimum tensile strength of the bolt. Y _b is the specified minimum yield strength of the bolt.

⁸⁶ Addition of bolt grade ISO 6.8 and 12.9; Revision of tension strength of other bolt grade.

Item	Current version	Amendments
87. Clause 11.7.3 ⁸⁷	11.7.3 Mechanical properties	11.7.3 Mechanical properties
	Cold forming is a process whereby the main forming of metal section is	Cold forming is a process whereby the main forming of metal section is
	done at ambient temperature. It changes the material properties of	done at ambient temperature. It changes the material properties of
	steel and impairs ductility as well as toughness but enhances strength.	steel and impairs ductility as well as toughness but enhances strength.
	These changes may also limit the ability to weld in cold deformed areas.	The extent to which the properties are changed depends upon the
	The extent to which the properties are changed depends upon the type	type of steel, the forming temperature and the degree of deformation.
	of steel, the forming temperature and the degree of deformation.	Accounting for the changes in material properties, welding requirements
	The basic requirements on strength and ductility are given in clause	as stipulated in clause 11.7.5 shall be followed.
	3.1.2. As a conservative design, no strength enhancement is allowed.	The basic requirements on strength and ductility are given in clause
	To ensure sufficient notch toughness, the minimum average Charpy V-	3.1.2. As a conservative design, no strength enhancement in round
	notch impact test energy at the required design temperature should be in	corners due to cold-forming is allowed.
	accordance with clause 3.2.	To ensure sufficient notch toughness, the minimum average Charpy V-
		notch impact test energy at the required design temperature should be in
		accordance with clause 3.2.

⁸⁷ Deletion of limitation of welding in cold formed areas; Addition of welding requirement.

Item	Current version	Amendments
Item 88. Table 11.7.5 ⁸⁸	Table 11.5 Conditions for welding cold-formed area and adjacent materials Table 11.5 Conditions for welding cold-formed area and adjacent materials	Amendments 11.7.5 Welding at cold-formed zones Welding may be carried out in the corners and the adjacent cold-formed zones, provided that one of the following conditions is satisfied: (a) the internal radius-to-thickness r/t ratio satisfies the relevant value given in Table 11.5; or Table 11.5 Conditions for welding cold-formed areas and adjacent materials Minimum Strain due Maximum thickness (mm)
	the limits given in Table 11.5 can be assumed to satisfy these limits if these sections have a thickness not exceeding 12.5 mm and are Aluminium-killed with a quality J2H, K2H, MH, MLH, NH or NLH as defined in BS EN 10219 and further satisfy C ≤ 0.18%, P ≤ 0.020% and S ≤ 0.012%. In other cases welding is only permitted within a distance of 5t from the corners if it	≥ 1.5 ≤ 25 8 8 10 ≥ 1.0 ≤ 33 4 4 6 (b) the welding procedure shall fulfill the Welding Procedure Specification (WPS) as stipulated in clause 14.3.3.
		formed zones of those cold-formed hollow sections which are produced to those relevant materials specifications of cold-formed hollow sections given in Annex A1.1.

⁸⁸ Deletion of restriction of welding at cold formed zone.

Item	Current version	Amendments
89. Clause 12.1.3 ⁸⁹	Whenever fire protection materials are required to achieve the specified	Whenever fire protection materials are required to achieve the specified
	fire resistance period, the thicknesses of the fire protection materials	fire resistance period, the thicknesses of the fire protection materials
	should be derived from standard fire tests at accredited laboratories	should be derived from standard fire tests at accredited laboratories
	whilst the recommendations should be prepared by a suitably qualified	whilst the recommendations should be prepared by a suitably qualified
	person. Alternatively, current assessment methods include (a)	person. Alternatively, current assessment methods include (a) standard
	standard fire tests, (b) limiting temperature methods, (c) performance-	fire tests, (b) limiting temperature methods, (c) performance-based
	based design methods, and (d) simplified calculation methods.	design methods, and (d) simplified calculation methods.
		Connection plates, stiffeners and similar elements should be ordinarily
		treated with the same fire protection thickness as the primary steel
		member to which they are attached.

⁸⁹ Addition of fire protection requirement for connection plates.

Item	Current version	Amendments
90. Clause 14.3.6.4 ⁹⁰	14.3.6.4 Hold time before final NDT	14.3.6.4 Hold time before final NDT
	Owing to the risk of delayed cracking, a hold time period of at least 16	Owing to the risk of delayed cracking, a hold time period of at least 16
	hours should generally be allowed before the final inspection is made of	hours should generally be allowed before the final inspection is made of
	as-welded fabrications. This hold time should be reduced for thin	as-welded fabrications. This hold time should be reduced for thin
	materials whose yield strength is less than 500 N/mm ² or should be	materials whose yield strength is less than 690 N/mm² or should be
	increased for materials of combined thickness greater than 50 mm or of	increased for materials of combined thickness greater than 50 mm or of
	a yield strength over 500 N/mm ² . Typical hold times conforming with	a yield strength over 690 N/mm². Typical hold times conforming
	this requirement are illustrated in Table 14.2b. The hold time is the	with this requirement are illustrated in Table 14.2b. The hold time is the
	waiting time normally required after completion of welding. In high	waiting time normally required after completion of welding. In high
	restraint situations (e.g. cruciform welds), the hold time might need to	restraint situations (e.g. cruciform welds), the hold time might need to
	be increased; with evidence of continual satisfactory production, hold	be increased; with evidence of continual satisfactory production, hold
	times might be reduced. For material with a yield strength greater than	times might be reduced.
	500 N/mm ² hold time should be decided by a welding engineer and	For material with a yield strength greater than 690N/mm ² , the hold
	Table 14.2b should not be used.	time should be submitted by the Responsible Engineer based on the
		advice of a welding engineer or the supplier of the welding consumables,
		and Table 14.2b should not be used.

⁹⁰ Revision of yield strength of steel for hold time.

Item		Cur	rent versio	n		Amendments					
91. Table 14.2b ⁹¹	Table 14.2b - Illustr Nominal Carbon Equivalent Value (CEV) ⁽²⁾ ≤ 0.40 ≤ 0.45 ≤ 0.48 > 0.48 Notes: (1) Where the figures an (2) The Carbon equival formula and is calcul CEV = C + M/n (3) ∑t is the combined to	Σt (3) < 30mm None 8 hours 16 hours 40 hours (1) e in bold, generally, the entity value is that of the ated as follows: γ + Mo + V + N + O + 15 bickness as shown in in the entity value is that of the ated as follows: Σt + t,	(not applicable to C) Figure 14.1. 1 - Combined thi	lass 1H steel) $ \frac{1}{t_1} = t_1 + t_2 + t_1 $ ckness	(T14.1)	N E(C) (C) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	Where the figures are consumables should b The Carbon equivaler formula and is calculat	St (3) < 30mm None 8 hours 16 hours 40 hours (1) 48 hours (1) in bold, generally, the as solitows: + Mo + V N + Cu 5 15 ckness as shown in F Σt = t ₁ + t ₂ Figure 14.1	e parent material to	the International Institute t_1 to t_2 to t_3 to t_4 t_4 t_5 t_6 t_7 t_8	(T14.1)
92. Annex A1.1.192	A1.1.1 Australian a. AS/NZS 1163: AS/NZS 1594: AS/NZS 3678: AS/NZS 3679.	2002 2011 1: 2010	Cold-formed stru Hot-rolled steel fl	at products Hot-rolled plates, Hot-rolled bars a	, floorplates and slabs nd sections	A1.1.1	Australian ar AS/NZS 1163: AS/NZS 1594: AS/NZS 1595: AS/NZS 3678: AS/NZS 3679.2	2002 (R2016) 1998 (R2016) 2016 1:2016	Cold-formed stru Hot-rolled steel f	lat products loyed, steel shee Hot-rolled plates Hot-rolled bars a	e <mark>t and strip</mark> s, floorplates and slabs and sections

Revision of hold times for CEV > 0.48; Deletion of restriction of Class 1H steel for formula of CEV calculation. Revision of updated standards.

93. Annex A1.1.2 ⁹³	A1.1.2	American standards		44.4.0	American standards				
	Λ1.1.2			A1.1.2	American standards				
		ASTM A36/A36M-08	Standard Specification for Carbon Structural Steel		ASTM A36/A36M-19	Standard Specification for Carbon Structural Steel			
		ASTM A500/A500M-10a	Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and		ASTM A283/A283-18	Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates			
		A CT NA A E 4 4/A E 4 4NA A E (2000)	Shapes M-05(2009) Standard Specification for High-Yield-Strength,	ASTM A308-2010	Standard Specification for Steel Sheet, Terne (Lead-Tin Alloy) Coated by the Hot-Dip Process				
		ASTM A514/A514M-05(2009) Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding		ASTM A423/A423M-19	Standard Specification for Seamless and Electric-Welded Low-Alloy Steel Tubes				
	ASTM A572/A572M-07 Standard Specifica	Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel		ASTM A500/A500M- <mark>21a</mark>	Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes				
		ASTM A618/A618M-04(2010)	Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing		ASTM A514/A514M- <mark>18e1</mark>	Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for			
		ASTM A847/A847M-11	Standard Specification for Cold-Formed Welded and Seamless High Strength, Low-Alloy Structural Tubing		ASTM A529/A529M-19	Welding Standard Specification for High-Strength Carbon-			
			with Improved Atmospheric Corrosion Resistance			Manganese Steel of Structural Quality			
		Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST) ASTM A992/A992M-11 Standard Specification for Structural Steel Shapes			ASTM A572/A572M- <mark>21e1</mark>	Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel			
					ASTM A588/A588M-19	Standard Specification for High-Strength Low-Alloy			
									Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance
						ASTM A595/A595M-18	Standard Specification for Steel Tubes, Low-Carbon or High-Strength Low-Alloy, Tapered for Structural Use		
					ASTM A618/A618M- <mark>21</mark>	Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing			
					ASTM A653/A653M-20	Standard Specification for Steel Sheet, Zinc-Coated			
						(Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process			
					ASTM A656/A656M-18	Standard Specification for Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate with Improved Formability			
					ASTM A709/A709M-21	Standard Specification for Structural Steel for Bridges			

⁹³ Revision of updated standards.

Item	Current version		Amendments
		ASTM A847/A847M- <mark>21</mark>	Standard Specification for Cold-Formed Welded and Seamless High Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance
		ASTM A871/A871M-20	Standard Specification for High Strength Low-Alloy Structural Steel Plate with Atmospheric Corrosion Resistance
		ASTM A875/A875M-21	Standard Specification for Steel Sheet, Zinc-5 % Aluminum Alloy-Coated by the Hot-Dip Process
		ASTM A913/A913M- <mark>19</mark>	Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)
		ASTM A924/A924M-20	Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process
		ASTM A945-2006	Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness
		ASTM A973/A973M-20	Standard Specification for Structural Steel Shapes
		ASTM A992/A992M-20	Standard Specification for Structural Steel Shapes
		ASTM A1011/A1011M-18a	Standard Specification for Steel, Sheet and Strip, Hot- Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

Item	C	urrent version			Amendments
94. Annex A1.1.3 ⁹⁴	A1.1.3 Chinese standards GB/T 247 - 1997 GB/T 700 - 2006 GB/T 709 - 2006 GB/T 1591 - 2008 GB/T 5313 - 1985 YB 4104 - 2000 GB 50017 - 2003 GB 50205 - 2001	Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel Carbon structural steel Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel High strength structural steel Through thickness properties of steel plates Steel plate for high rise building structure Code for design of steel structures Code for acceptance of construction quality of steel structures	A1.1.3	Chinese standards GB/T 247 - 2008 GB/T 700 - 2006 GB/T 709 - 2019 GB/T 1591 - 2018 GB/T 5313 - 2010 YB 4104 - 2000 GB/T 16270 - 2009 GB 50017 - 2017 GB 50205 - 2020	Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel Carbon structural steel Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel High strength low alloy structural steel Steel plates with through-thickness characteristics Steel plate for high rise building structure High strength structural steel plates in the quenched and tempered condition Code for design of steel structures Standard for acceptance of construction quality of steel structures
95. Annex A1.1.4 ⁹⁵	1.1.4 Japanese standards JIS G 3101: 2010 JIS G 3106: 2008 JIS G 3136: 2005 JIS G 3350: 2009 JIS G 3352: 2003 JIS G 3444: 2010 JIS G 3466: 2010 JIS A 5523:2006 JIS A 5528:2006	Rolled steels for general structure Rolled steels for welded structure Rolled steels for building structure Light gauge steels sections for general structure Steel decks Carbon steel tubes for general structure Carbon steel square rectangular tubes for general structure Weldable hot rolled steel sheet piles Hot rolled steel sheet piles	A1.1.4	Japanese standards JIS G 3101: 2020 JIS G 3106: 2020 JIS G 3136: 2012 JIS G 3350: 2021 JIS G 3352: 2014 JIS G 3444: 2021 JIS G 3466: 2021 JIS A 5523:2021 JIS A 5528:2021	Rolled steels for general structure Rolled steels for welded structure Rolled steels for building structure Light gauge steels sections for general structure Steel decks Carbon steel tubes for general structure Carbon steel square rectangular tubes for general structure Weldable hot rolled steel sheet piles Hot rolled steel sheet piles

Revision of updated standards.Revision of updated standards.

96. Annex A1.1.5 ⁹⁶	A1.1.5	UK and European stand	dards	A1.1.5	UK and European stan	dards					
		BS EN 10025: 2004	Hot rolled products of non-alloy structural steels - Technical delivery conditions.		BS EN 10025-1: 2019	Hot rolled products of non-alloy structural steels. Part 1: General technical delivery conditions					
	BS E	BS EN 10164: 2004	Steel products with improved deformation properties perpendicular to the surface of the product - Technical	and	BS EN 10025-2: 2019	Hot rolled products of non-alloy structural steels. Part 2: Technical delivery conditions for non-alloy structural steels					
		delivery conditions.			BS EN 10025-3: 2019	Hot rolled products of non-alloy structural steels. Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels					
			fine grain structural steels. Part 1: Technical delivery requirements.		BS EN 10025-4: 2019	Hot rolled products of non-alloy structural steels. Part 4: Technical delivery conditions for thermomechanical rolled					
	Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10025-5: 2019	weldable fine grain structural steels Hot rolled products of non-alloy structural steels. Part 5:							
	BS EN 10147: 2000	Continuous hot dip zinc coated carbon steel sheet of structural quality		BS EN 10025-8: 2019	Technical delivery conditions for structural steels with improved atmospheric corrosion resistance Hot rolled products of non-alloy structural steels. Part 8:						
					DS EN 10020-0. 2019	Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition					
					BS EN 10164: 2018	Steel products with improved deformation properties perpendicular to the surface of the product - Technical delivery conditions.					
					BS EN 10210-1: 2006	Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery requirements.					
					BS EN 10210-2: 2019	Hot finished steel structural hollow sections. Tolerances, dimensions and sectional properties.					
										BS EN 10210-3: 2020	Hot finished steel structural hollow sections. Technical delivery conditions for high strength and weather resistant steels.
					BS EN 10248-1: 1996	Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions					
					BS EN 10147: 2000	Continuous hot dip zinc coated carbon steel sheet of structural quality (withdrawn, and replaced by BS EN 10348:2015)					
					BS EN 10149-1: 2013	Hot rolled flat products made of high strength steels for cold forming – Part 1: General technical delivery conditions					
					BS EN 10149-2: 2013	Hot rolled flat products made of high strength steels for cold forming – Part 1: Technical delivery conditions for thermomechanically rolled steels					

⁹⁶ Revision of updated standards.

		Amendments
	BS EN 10149-3: 2013	Hot rolled flat products made of high strength steels for cold forming – Part 1: Technical delivery conditions for normalized or normalized rolled steels
	BS EN 10348: 2015	Continuously hot-dip coated steel flat products for cold forming.
	BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Technical delivery requirements
	BS EN 10219-2: 2019	Cold formed welded steel structural hollow sections. Tolerances, dimensions and sectional properties
	BS EN 10219-3: 2020	Cold formed welded steel structural hollow sections. Technical delivery conditions for high strength and weather resistant steels

Item	Cı	irrent version		Amendments			
97. Annex A1.1.6 ⁹⁷					e tests		
	BS EN 10002-1: 2001	Tensile testing of metallic materials. Part 1: Method of test at ambient temperature. (Withdrawn in the UK, replaced by BS EN ISO 6892-1: 2009)		BS EN ISO 148-1: 2016	Metallic materials - Charpy Pendulum impact test. Part 1: Test method		
	BS EN 10045-1: 1990	Charpy impact test on metallic materials – Part 1: Test method (V- and U-notches) (Withdrawn in the UK, replaced by BS EN ISO 148-1: 2010)		BS EN ISO 6892-1: 2019	Metallic materials - Tensile testing. Part 1: Method of test at ambient temperature		
	BS EN ISO 148-1: 2010	Metallic materials - Charpy Pendulum impact test. Part 1: Test method		ASTM E8/E8M- <mark>21</mark>	Standard Test Methods for Tension Testing of Metallic Materials		
	BS EN ISO 6892-1: 2009	Metallic materials - Tensile testing. Part 1: Method of test at ambient temperature		ASTM E23- <mark>18</mark>	Standard Test Methods for Notched Bar Impact Testing of Metallic Materials		
	ASTM E8/E8M-09	Standard Test Methods for Tension Testing of Metallic Materials		ASTM A770/A770M-03 (R20	07) Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications		
	ASTM E23-07ae1	Standard Test Methods for Notched Bar Impact Testing of Metallic Materials		JIS G 3199: 2021	Specification for through-thickness characteristics of steel plate, wide flat and sections		
	ASTM A770/A770M-03 (R20)	07) Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications		AS/NZS 3678: 2016	Structural steel – Hot-rolled plates, floorplates and slabs		
	JIS G 3199: 2009	Specification for through-thickness characteristics of steel plate, wide flat and sections		GB 5313:20 <mark>10</mark>	Steel plate with through-thickness characteristics		
	AS/NZS 3678: 2011	Structural steel – Hot-rolled plates, floorplates and slabs					
	GB 5313:2000-T	Specification for through-thickness characteristics of steel plate, wide flat and sections					

⁹⁷ Revision of updated standards.

Item	Current version	Amendments
98. Annex A1.2.2 ⁹⁸	AT.2.2 American standards ASTM A27/A27M-10 Standard Specification for Steel Castings, Carbon, for General Application ASTM A148/A148M-08 Standard specification for steel castings, high strength, for structural purposes ASTM A488/A488M -10 Standard Practice for Steel Castings, Welding Qualifications of Procedures and Personnel ASTM A781/A781M -11 Standard Specification for Castings, Steel and Alloy, Common Requirements, for General Industrial Use ASTM A957/A957M -11 Standard Specification for Investment Castings, Steel and Alloy, Common Requirements, for General Industrial Use	A1.2.2 American standards ASTM A27/A27M-20 Standard Specification for Steel Castings, Carbon, for General Application ASTM A148/A148M-20e1 Standard specification for steel castings, high strength, for structural purposes ASTM A488/A488M -18e2 Standard Practice for Steel Castings, Welding Qualifications of Procedures and Personnel ASTM A781/A781M -21 Standard Specification for Castings, Steel and Alloy, Common Requirements, for General Industrial Use ASTM A957/A957M -21 Standard Specification for Investment Castings, Steel and Alloy, Common Requirements, for General Industrial Use
99. Annex A1.2.3 ⁹⁹	A1.2.3 Chinese standards GB50017 – 2003 Code for design of steel structures	A1.2.3 Chinese standards GB50017 – 2017 Code for design of steel structures

Revision of updated standards.Revision of updated standards.

Item			Curre	ent version	1			Amendments
100. Annex A1.2.5 ¹⁰⁰	A1.2.5 UK and European st		2.5 UK and European standards				UK and European star	ndards
		BS 29: 1976	ru		arbon steel forgings above 150mm drawn in the UK, replaced by BS EN		BS 29: 1976	Specification for carbon steel forgings above 150mm ruling section (Withdrawn in the UK, replaced by BS EN 10250-2: 2000)
		BS 3100: 1991	pi		eel castings for general engineering wn in the UK, replaced by BS EN		BS 3100: 1991	Specification for steel castings for general engineering purposes (Withdrawn in the UK, replaced by BS EN 10293: 2005)
		BS EN 10250-2: 200			ings for general engineering purposes quality and special steels		BS EN 10250-2: 2000	Open steel die forgings for general engineering purposes - Part 2: Non-alloy quality and special steels
		BS EN 10293: 2005	St	teel castings for g	eneral engineering uses		BS EN 10293: 2015	Steel castings for general engineering uses
		DIN 1681: 1990		ast steel for gen elivery conditions	eral engineering purposes: technical		DIN 1681: 1990	Cast steel for general engineering purposes: technical delivery conditions
101. Annex A1.3.1 ¹⁰¹						A1.3.1	Australian and New Z	ealand standards
				and New Zeala			AS 1110.1: 2015	ISO metric hexagon bolts and screws - Product grades A and B - Bolts
			AS 1110.1: 20	000	ISO metric hexagon bolts and grades A and B - Bolts		AS 1110.2: 2015	ISO metric hexagon bolts and screws - Product grades A and B - Screws
			AS 1110.2: 20	000	ISO metric hexagon bolts and grades A and B - Screws		AS 1111.1: 2015	ISO metric hexagon bolts and screws - Product grade C - Bolts
			AS 1111.1: 20	000	ISO metric hexagon bolts and grade C - Bolts		AS 1111.2: 2015	ISO metric hexagon bolts and screws - Product grade C - Screws
			AS 1111.2: 20	000	ISO metric hexagon bolts and grade C - Screws		AS 1112.1: 2015	ISO metric hexagon nuts - Style 1 - Product grades A and B
			AS 1112.1: 20	000	ISO metric hexagon nuts - S grades A and B		AS 1112.2: 2015	ISO metric hexagon nuts - Style 2 - Product grades A and B
			AS 1112.2: 20	000	ISO metric hexagon nuts - S grades A and B		AS 1112.3: 2015	ISO metric hexagon nuts - Product grade C
			AS 1112.3: 20	000	ISO metric hexagon nuts - Product gr		AS 1112.4: 2015	ISO metric hexagon nuts - Chamfered thin nuts - Product grades A and B
			AS 1112.4: 20	000	ISO metric hexagon nuts - Char Product grades A and B		AS/NZS 1252: 2016	High strength steel bolts with associated nuts and washers for structural engineering
			AS/NZS 1252	1996	High strength steel bolts with as washers for structural engineering		AS/NZS 1559: 2018	Hot-dip galvanized steel bolts with associated nuts and washers for tower construction
			AS/NZS 1559	: 1997	Hot-dip galvanized steel bolts with a washers for tower construction			

Revision of updated standards.Revision of updated standards.

Item		Cı	irrent version		A	mendments
102. Annex A1.3.2 ¹⁰²	A1.3.2	American standards ASTM A194/A194M-10a	Standard Specification for Carbon and Alloy Steel Nuts	A1.3.2	American standards ASTM A193-2014	Standard Specification for Alloy-steel and Stainless Steel Bolting Materials for High Temperature Service
		ASTM A307-10	for Bolts for High Pressure or High Temperature, or Both Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength		ASTM A194/A194M- <mark>20a</mark>	Standard Specification for Carbon Steel, Alloy Steel and Stainless Steel Nuts for Bolts for High Pressure or High Temperature, or Both
		ASTM A325-10	Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength		ASTM A307- <mark>21</mark>	Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength
		ASTM A325M-09	Standard Specification for Structural Bolts, Steel, Heat Treated, 830 MPa Minimum Tensile Strength (Metric)		ASTM A325-2014 (withdrawn)	Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
		ASTM A490-10ae1	Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength		ASTM A325M-2014 (withdraw	n) Standard Specification for Structural Bolts, Steel, Heat Treated, 830 MPa Minimum Tensile Strength (Metric)
		ASTM A490M-10	Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints		ASTM A490-14a (Withdrawn) ASTM A490M-14a (Withdrawn	Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength Standard Specification for High-Strength Steel Bolts,
		ASTM A563-07a	(Metric) Standard Specification for Carbons and Alloy Steel Nuts		ASTM A490M-144 (VIUIGIAM	Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric)
		ASTM F436-11	Standard Specification for Hardened Steel Washers		ASTM A563 <mark>/A563M-21a</mark> ASTM F436- <mark>19</mark>	Standard Specification for Carbons and Alloy Steel Nuts Standard Specification for Hardened Steel Washers
		ASTM F436M-10	Standard Specification for Hardened Steel Washers (Metric)		ASTM F436M- <mark>19</mark>	Standard Specification for Hardened Steel Washers (Metric)
		ASTM F1852-08	Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength		ASTM F1852- <mark>14 (Withdrawn)</mark>	Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
					ASTM F3125/F3125M-21	Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120ksi and 150 ksi Minimum Tensile Strength, and Metric Dimensions 830 MPa and 1040 MPa Minimum Tensile Strength
					ASTM F3148-17a	Standard Specification for High Strength Structural Bolt Assemblies, Steel and Alloy Steel, Heat Treated, 144ksi Minimum Tensile Strength, Inch Dimensions

¹⁰² Revision of updated standards.

Item		Cı	ırrent version		1	Amendments
103. Annex A1.3.5 ¹⁰³	A1.3.5	UK , European and ISC) standards	A1.3.5	UK , European and ISC) standards
		BS 3692: 2001	ISO metric precision hexagon bolts, screws and nuts, Specification		BS 3692: 2014	ISO metric precision hexagon bolts, screws and nuts, Specification
		BS 4190: 2001	ISO metric black hexagon bolts, screws and nuts, Specification		BS 4190: 2014	ISO metric black hexagon bolts, screws and nuts, Specification
		BS 4320: 1968	Specification for metal washers for general engineering purposes. Metric series		BS 4320: 1968	Specification for metal washers for general engineering purposes. Metric series (Withdrawn, and replaced by BS EN ISO 898-3:2018, BS EN ISO 7091:2000, BS EN ISO
		BS 4395-1: 1969	Specification for high strength friction grip bolts and associated nuts and washers for structural engineering -			7092:2000, BS EN ISO 7093:2000, and BS EN ISO 7094:2000)
			Part 1: General grade		BS 4395-1: 1969	Specification for high strength friction grip bolts and associated nuts and washers for structural engineering -
		BS 4395-2: 1969	Specification for high strength friction grip bolts and associated nuts and washers for structural engineering - Part 2: Higher grade bolts and nuts and general grade washers			Part 1: General grade (Withdrawn, and replaced by BS EN 14399-1: 2015, BS EN 14399-2: 2015, BS EN 14399-3: 2015, BS EN 14399-4: 2015, BS EN 14399-5: 2015, BS EN 14399-6: 2015, BS EN 14399-7: 2018, and BS EN 14399-6: 2015, BS EN 14399-7: 2018, and BS EN
		BS 4604-1: 1970	Specification for the use of high strength friction grip bolts in structural steehvork - Metric series - Part 1: General grade (Withdrawn in the UK, replaced by BS EN 1993-1.8: 2005)		BS 4395-2: 1969	14399-8: 2018) Specification for high strength friction grip bolts and associated nuts and washers for structural engineering - Part 2: Higher grade bolts and nuts and general grade washers (Withdrawn, and replaced by BS EN 14399-1)
		BS 4604-2: 1970	Specification for the use of high strength friction grip bolts in structural steelwork - Metric series - Part 2: Higher grade (parallel shank) (Withdrawn in the UK, replaced by BS EN 1993-1-8: 2005)			2005, BS EN 14399-2: 2015, BS EN 14399-3: 2015, BS EN 14399-4: 2015, BS EN 14399-5: 2015, BS EN 14399-6: 2015, BS EN 14399-7: 2018, and BS EN 14399-8: 2018)
		BS EN 1993-1-8: 2005	Eurocode 3; Design of steel structure. Design of joints		BS 4604-1: 1970	Specification for the use of high strength friction grip bolts in structural steelwork - Metric series - Part 1: General
		BS 4933: 2010	Specification for ISO metric black cup and countersunk head bolts and screws with hexagon nuts			grade (Withdrawn in the UK, replaced by BS EN 1993-1.8: 2005)
		BS 7419: 1991	Specification for holding down bolts		BS 4604-2: 1970	Specification for the use of high strength friction grip bolts in structural steelwork - Metric series - Part 2: Higher
		BS 7644-1: 1993	Direct tension indicators - Part 1: Specification for compressible washers (Replaced by BS EN 14399-9:			grade (parallel shank) (Withdrawn in the UK, replaced by BS EN 1993-1-8: 2005)
			2009 but remains current)		BS EN 1993-1-8: 2005	Eurocode 3; Design of steel structure. Design of joints
		BS 7644-2: 1993	Direct tension indicators - Part 2: Specification for nut face and bolt face washers (Replaced by BS EN 14399-		BS 4933: 2010	Specification for ISO metric black cup and countersunk head bolts and screws with hexagon nuts
			9: 2009 but remains current)		BS 7419: 1991	Specification for holding down bolts
			•		BS 7644-1: 1993	Direct tension indicators - Part 1: Specification for compressible washers (Replaced by BS EN 14399-9: 2009 but remains current)
					BS 7644-2: 1993	Direct tension indicators - Part 2: Specification for nut face and bolt face washers (Replaced by BS EN 14399-9: 2009 but remains current)

¹⁰³ Revision of updated standards.

Item	(Current version		Amendments
Annex A1.3.5				
(Cont'd)	BS EN 14399-9: 2009	High strength structural bolting for preloading. System HR or HV. Part 9: Direct tension indicators for bolts and nuts assemblies	BS EN 14399-1: 2015	High-strength structural bolting assemblies for preloading General requirements.
	BS EN ISO 4014: 2011		BS EN 14399-2: 2015	High-strength structural bolting assemblies for preloading Suitability for preloading.
	BS EN ISO 4016: 2011	Hexagon head bolts: Product grades A and B Hexagon head bolts: Product grade C	BS EN 14399-3: 2015	High-strength structural bolting assemblies for preloading
		-		System HR. Hexagon bolt and nut assemblies.
	BS EN ISO 4017: 2011	Hexagon head screws: Product grades A and B	BS EN 14399-4: 2015	High-strength structural bolting assemblies for preloading
	BS EN ISO 4018: 2011	Hexagon head screws: Product grade C		System HV. Hexagon bolt and nut assemblies.
	BS EN ISO 4032: 2001	Hexagon nuts, style 1: Product grades A and B	BS EN 14399-5: 2015	High-strength structural bolting assemblies for preloading Plain washers.
	BS EN ISO 4033: 2001	Hexagon nuts, style 2: Product grades A and B	BS EN 14399-6: 2015	High-strength structural bolting assemblies for preloadin
	BS EN ISO 4034: 2001	Hexagon nuts: Product grade C	DS EN 14555-0. 2015	Plain chamfered washers.
	BS EN ISO 7091: 2000	Plain washers: Normal series, Product grade C	BS EN 14399-7: 2018	High-strength structural bolting assemblies for preloadin System HR. Countersunk head bolt and nut assemblies
			BS EN 14399-8: 2018	High-strength structural bolting assemblies for preloading
			BS EN 14399-9: 2018	System HV. Hexagon fit bolt and nut assemblies. High strength structural bolting for preloading. System H or HV. Part 9: Direct tension indicators for bolts and nut assemblies.
			BS EN ISO 898-1:2013	Mechanical properties of fasteners made of carbon ste and alloy steel. Bolts, screws and studs with specific property classes. Coarse thread and fine pitch thread
			BS EN ISO 898-2:2012	Mechanical properties of fasteners made of carbon ste and alloy steel. Nuts with specified property classe Coarse thread and fine pitch thread.
			BS EN ISO 898-3:2018+A1:	
			BS EN ISO 4014: 2011	Hexagon head bolts: Product grades A and B.
			BS EN ISO 4016: 2011	Hexagon head bolts: Product grade C.
			BS EN ISO 4017: 2011	Hexagon head screws: Product grades A and B.
			BS EN ISO 4018: 2011	Hexagon head screws: Product grade C.
			BS EN ISO 4032: 2001	Hexagon nuts, style 1: Product grades A and B.
			BS EN ISO 4033: 2001	Hexagon nuts, style 2: Product grades A and B.
			BS EN ISO 4034: 2001	Hexagon nuts: Product grade C.
			BS EN ISO 7091: 2000	Plain washers: Normal series, Product grade C.

Item	Current version	Amendments
104. Annex A1.4.1.1 ¹⁰⁴	A1.4.1.1 American standards AWS D1.1/D1.1M: 2010 Structural Welding Code - Steel AWS D1.3/D1.3M: 2008 Structural Welding Code - Sheet Steel	A1.4.1.1 American standards AWS D1.1/D1.1M: 2010 Structural Welding Code - Steel AWS D1.3/D1.3M: 2008 Structural Welding Code - Sheet Steel AWS A5.5/5.5M: 2014 Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.23/5.23M: 2021 Specification for Low-Alloy and High Manganese Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M: 2005 Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M: 2010 Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding

¹⁰⁴ Revision of updated standards.

Item	Cu	rrent version	A	Amendments			
105. Annex A1.4.1.2 ¹⁰⁵	BS EN 758: 1997 BS EN ISO 17632: 2008 BS EN 1011-1: 2009 BS EN 1011-2: 2001 BS EN 22553: 1995	Welding consumables. Tubular cored electrodes for metal arc welding with and without a gas shield of non-alloy and fine grain steels. Classification (Withdrawn in the UK, replaced by BS EN ISO 17632: 2008) Welding consumables. Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non-alloy and fine grain steel. Classification Welding - Recommendations for welding of metallic materials. Part 1: General guidance for arc welding Welding - Recommendations for welding of metallic materials. Part 2: Arc welding of ferritic steels Welded, brazed and soldered joints - Symbolic representation on drawings	BS EN 758: 1997 BS EN ISO 17632: 2008 BS EN 1011-1: 2009 BS EN 1011-2: 2001 BS EN 22553: 1995 BS EN ISO 14174: 2018 BS EN ISO 18275: 2018 BS EN ISO 18276: 2017 BS EN ISO 16834: 2012 BS EN ISO 26304: 2018	Welding consumables. Tubular cored electrodes for metal arc welding with and without a gas shield of non-alloy and fine grain steels. Classification (Withdrawn in the UK, replaced by BS EN ISO 17632: 2008) Welding consumables. Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non-alloy and fine grain steel. Classification Welding - Recommendations for welding of metallic materials. Part 1: General guidance for arc welding Welding - Recommendations for welding of metallic materials. Part 2: Arc welding of ferritic steels Welded, brazed and soldered joints - Symbolic representation on drawings Welding consumables. Fluxes for submerged arc welding and electroslag welding. Classification. Welding consumables - Covered electrodes for manual metal arc welding of high-strength steels - Classification Welding consumables - Tubular cored electrodes for gasshielded and non-gas-shielded metal arc welding of high-strength steels - Classification Welding consumables - Wire electrodes, wires, rods and deposits for gas shielded arc welding of high-strength steels - Classification Welding consumables - Wire electrodes, wires, rods and deposits for gas shielded arc welding of high-strength steels - Classification Welding consumables - Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels - Classification (ISO 26304:2017)			

¹⁰⁵ Revision of updated standards.

Item	Current version			Amendments			
106. Annex A1.4.2.2 ¹⁰⁶	A1.4.2.2 UK European and IS BS EN 288-3: 1992 BS EN ISO 15614-1: +A1: 2008 BS EN ISO 15614-8:	Specification and approval of welding procedures for metallic materials. Part 3: Welding procedure tests for the arc welding of steels (Withdrawn in the UK, replaced by BS EN ISO 15614-1: 2004+A1: 2008) 2004 Specification and qualification of welding procedure for metallic materials. Welding procedure test. Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys		UK European and ISO standa BS EN 288-3: 1992 BS EN ISO 15607:2019 BS EN ISO 15609-1:2019(E) BS EN ISO 15614-1: 2017 +A1: 2019 BS EN ISO 15614-8:2016	Specification and approval of welding procedures for metallic materials. Part 3: Welding procedure tests for the arc welding of steels (Withdrawn in the UK, replaced by BS EN ISO 15614-1: 2017+A1: 2018) Specification and qualification of welding procedures for metallic materials – General rules Specification and qualification of welding procedures for metallic materials – Welding procedures specification – Part 1: Arc welding Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys Specification and qualification of welding procedures for metallic materials – Welding procedure test - Part 8: Welding of tubes to tube-plate joints		
107. Annex A1.4.3.2 ¹⁰⁷	A1.4.3.2 UK European and ISC BS EN 287-1: 2004 ISO 9606-1: 1994 BS EN 1418:1998 BS 4871-3:1985 BS 4872-1:1982	Qualification test of welders. Fusion welding. Part 1: Steels Approval testing of welders. Fusion welding. Part 1: Steels Welding personnel. Approved testing of welding operators for fusion welding and resistance weld setters for fully mechanized and automatic welding of metallic materials Specification for approval testing of welders to approved welding procedure. Part 3: Arc welding of tube to tube-plate joints in metallic materials Specification for approval testing of welders to welding procedure approval is not required. Part 1: Fusion welding of steel	A1.4.3.2	UK European and ISO stand BS EN 287-1: 2011 ISO 9608-1: 2017 BS EN 1418:1998 BS 4871-3:1985 BS 4872-1:1982	Qualification test of welders. Fusion welding. Part 1: Steels (Withdrawn, and replaced by BS EN ISO 9806-1:2017) Qualification testing of welders. Fusion welding. Steels Welding personnel. Approved testing of welding operators for fusion welding and resistance weld setters for fully mechanized and automatic welding of metallic materials (Withdrawn, and replaced by BS EN ISO 14732:2013) Specification for approval testing of welders to approved welding procedure. Part 3: Arc welding of tube to tube-plate joints in metallic materials Specification for approval testing of welders to welding procedure approval is not required. Part 1: Fusion welding of steel Welding personnel. Qualification testing of welding operators and weld setters for mechanized and automatic welding of metallic materials		

Revision of updated standards.Revision of updated standards.

108. Annex 1.4.4.2 ¹⁰⁸				A1.4.4.2	UK European and ISO standa	rds
	A1.4.4.2	UK European and ISO standar BS 3923: Part 1: 1986	Methods for ultrasonic examination of welds. Part 1: Methods for manual examination of fusion welds in ferritic steels (Withdrawn in the UK, replaced by BS EN 1714: 1998)		BS 3923: Part 1: 1986	Methods for ultrasonic examination of welds. Part 1: Methods for manual examination of fusion welds in ferritic steels (Withdrawn in the UK, replaced by BS EN 1714: 1998)
		BS EN 1714: 1998	Non-destructive testing of welded joints. Ultrasonic examination of welded joints (Withdrawn in the UK, replaced by BS EN ISO 17640: 2010)		BS EN 1714: 1998	Non-destructive testing of welded joints. Ultrasonic examination of welded joints (Withdrawn in the UK, replaced by BS EN ISO 17640: 2018)
		BS EN ISO 17640: 2010	Non-destructive testing of welds. Ultrasonic testing, Techniques, testing levels and assessment		BS EN ISO 17640: 2018	Non-destructive testing of welds. Ultrasonic testing, Techniques, testing levels and assessment
		BS EN 571-1: 1997	Non-destructive testing. Penetrant testing. Part 1: General principles		BS EN 571-1: 1997	Non-destructive testing. Penetrant testing. Part 1: General principles (Withdrawn and replaced by BS EN
		BS EN 970: 1997	Non-destructive examination of fusion welds. Visual			ISO 34521-1:2021)
			examination (Withdrawn in the UK, replaced by BS EN ISO 17637: 2011)		BS EN ISO 3452-1 :2021	Non-destructive testing. Penetrant testing. General
	BS EN ISO 17637: 2011 Non-destructive testing of welds. Visual testing of fusion welded joints BS EN 1290: 1998 Non-destructive examination of welds. Magnetic particle examination of welds (Withdrawn in the UK, replaced by BS EN ISO 17638: 2009) BS EN ISO 17638: 2009 Non-destructive testing of welds. Magnetic particle testing		BS EN 970: 1997	principles Non-destructive examination of fusion welds. Visual		
		Non-destructive examination of welds. Magnetic particle examination of welds (Withdrawn in the UK, replaced by			examination (Withdrawn in the UK, replaced by BS EN ISO 17637: 2016)	
			BS EN 1290: 1998	Non-destructive examination of welds. Magnetic particle examination of welds (Withdrawn in the UK, replaced by BS EN ISO 17638: 2016)		
		BS EN 1435: 1997	Non-destructive examination of welds. Radiographic examination of welded joints		BS EN ISO 17637: 2016	Non-destructive testing of welds. Visual testing of fusion
		BS EN ISO 9934-1: 2001	Non-destructive testing. Magnetic particle testing. Part 1 : General Principles		BS EN ISO 17838: 2016	welded joints Non-destructive testing of welds. Magnetic particle testing
		The abstracted essentials for typically used welding symbols are given in Annex C.		BS EN ISO 17639: 2022	Destructive tests on welds in metallic materials.	
					Macroscopic and microscopic examination of welds	
			BS EN 1435: 1997	Non-destructive examination of welds. Radiographic examination of welded joints (Withdrawn, and replaced by BS EN ISO 17636-1:2013, and BS EN ISO 17636-2:2013)		
					BS EN ISO 9934-1: 2016	Non-destructive testing. Magnetic particle testing. Part 1 : General Principles
					BS EN ISO 17636-1:2013	Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with film
					BS EN ISO 17838-2:2013	Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with film

¹⁰⁸ Revision of updated standards.

Item	Current version	Amendments
		BS EN ISO 10893-2:2011 + A1:2020 Non-destructive testing of steel tubes. Automated eddy current testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of imperfections
		BS EN ISO 10893-3:2011 + A1:2020 Non-destructive testing of steel tubes. Automated full peripheral flux leakage testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection of longitudinal and/or transverse imperfections BS EN ISO 10893-8:2011 + A1:2020 Non-destructive testing of steel tubes. Automated ultrasonic testing of seamless and welded steel tubes for the detection of laminar imperfections
		BS EN ISO 10893-9:2011 + A1:2020 Non-destructive testing of steel tubes. Automated ultrasonic testing for the detection of laminar imperfections in strip/plate used for the manufacture of welded steel tubes
		BS EN ISO 10893-10:2011 + A1:2020 Non-destructive testing of steel tubes. Automated full peripheral ultrasonic testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of longitudinal and/or transverse imperfections

Item		Cu	rrent version		A	Amendments
109. Annex 1.4.5 ¹⁰⁹				A1.4.5	Destructive test methods	s for welds
	A1.4.5	Destructive test methods BS EN 875:1995	for welds Destructive tests on welds in metallic materials. Impact		BS EN 875:1995	Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and
			tests. Test specimen location, notch orientation and examination (Withdrawn in the UK, replaced by BS EN			examination (Withdrawn in the UK, replaced by BS EN ISO 9018: 2022)
		BS EN ISO 9016: 2011	ISO 9016: 2011) Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and		BS EN ISO 9016: 2022	Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and examination
			examination		BS EN 876:1995	Destructive tests on welds in metallic materials.
		BS EN 876:1995	Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints (Withdrawn in the UK, replaced by BS EN ISO 5178: 2011)			Longitudinal tensile tests on weld metal in fusion welded joints (Withdrawn in the UK, replaced by BS EN ISO 5178: 2019)
		BS EN ISO 5178: 2011	Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints		BS EN ISO 5178: 2019	Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints
		BS EN 895:1995	Destructive tests on welds in metallic materials. Transverse tensile test (Withdrawn in the UK, replaced by BS EN ISO 4138: 2011)		BS EN 895:1995	Destructive tests on welds in metallic materials. Transverse tensile test (Withdrawn in the UK, replaced by BS EN ISO 4136: 2022)
		BS EN ISO 4136: 2011	Destructive tests on welds in metallic materials.		BS EN ISO 4136: 2022	Destructive tests on welds in metallic materials. Transverse tensile test
		BS EN 910:1996	Transverse tensile test Destructive tests on welds in metallic materials. Bend		BS EN 910:1998	Destructive tests on welds in metallic materials. Bend tests (Withdrawn in the UK, replaced by BS EN ISO 5173: 2010)
			tests (Withdrawn in the UK, replaced by BS EN ISO 5173: 2010)		BS EN ISO 5173: 2010	Destructive tests on welds in metallic materials. Bend tests
		BS EN ISO 5173: 2010	Destructive tests on welds in metallic materials. Bend tests		BS EN 1043-1:1996	Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints (Withdrawn in the UK, replaced by BS EN ISO 9015: 2016)
		BS EN 1043-1:1998	Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints		BS EN ISO 9015: 2016	Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints
			(Withdrawn in the UK, replaced by BS EN ISO 9015: 2011)		BS EN 1320:1997	Destructive tests on welds in metallic materials. Fracture tests (Withdrawn and replaced by BS EN ISO 9017:2018)
		BS EN ISO 9015: 2011	Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints		BS EN 1321:1997	Destructive tests on welds in metallic materials. Macroscopic and microscopic examination of welds (Withdrawn and replaced by BS EN ISO 17639:2022)
		BS EN 1320:1997	Destructive tests on welds in metallic materials. Fracture tests		BS EN ISO 9017:2018	Destructive tests on welds in metallic materials. Fracture test
		BS EN 1321:1997	Destructive tests on welds in metallic materials. Macroscopic and microscopic examination of welds		BS EN ISO 17639:2022 BS EN ISO 6505:1-3: 2005	Destructive tests on welds in metallic materials, Macroscopic and microscopic examination of welds Metallic materials, Brinell hardness test
		BS EN ISO 6505:1-3: 2005	Metallic materials. Brinell hardness test		BS EN ISO 6507:1-3: 2005	Metallic materials. Vickers hardness test
		BS EN ISO 6507:1-3: 2005	Metallic materials. Vickers hardness test			

Item	Current version			Amendments			
110. Annex A1.7.5 ¹¹⁰	A1.7.5	UK, European and ISC) standards	A1.7.5	UK, European and ISC) standards	
		BS 5950-7: 1992	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections		BS 5950-7: 1992	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections	
	BS EN 10149-1: 1996 Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions BS EN 10149-2: 1996 Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 2: Delivery conditions for thermomechanically rolled steels			BS EN 10149-1: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions		
				BS EN 10149-2: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 2: Delivery conditions for thermomechanically rolled steels		
	BS EN 10149-3: 1996 Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels BS EN 10219-1: 2006 Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery		BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels			
			BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements			
			requirements		BS EN 10219-3: 2020	Cold formed welded structural hollow sections. Part 3:	
	BS EN 10249-1: 1996 Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions BS EN 10268: 2006 Cold-rolled steel flat products with high yield strength for cold forming – Technical delivery conditions				Technical delivery conditions for high strength and weather resistant steels		
				BS EN 10249-1: 1996	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions		
			-		BS EN 10268: 2006	Cold-rolled steel flat products with high yield strength for cold forming – Technical delivery conditions	

Revision of updated standards.Revision of updated standards.

Item		Current version	A	mendments
111. Annex A2.3 ¹¹¹	A2.3 UK and European BS 5950: Structural use		A2.3 UK and European Stan	
	Part 1: 2000	Code of practice for design - Rolled and welded sections (Withdrawn in the UK, replaced by group of BS EN 1993-1-1: 2005, BS EN 1993-1-5: 2006, BS EN 1993-1-10: 2005, BS EN 1993-5: 2007, BS EN 1993-6: 2007 & BS EN 1993-1-8: 2005)	Part 1: 2000	Code of practice for design - Rolled and welded sections (Withdrawn in the UK, replaced by group of BS EN 1993-1-1: 2005, BS EN 1993-1-5: 2006, BS EN 1993-1-10: 2005, BS EN 1993-5: 2007, BS EN 1993-6: 2007 & BS EN 1993-1-8: 2005)
	Part 2: 2001	Specification for materials, fabrication and erection - Rolled and welded sections (Withdrawn in the UK, replaced by BS EN 1090-2: 2008)	Part 2: 2001	Specification for materials, fabrication and erection - Rolled and welded sections (Withdrawn in the UK, replaced by BS EN 1090-2: 2008)
	Part 3: 1990	Design in composite construction - Code of practice for design of simple and continuous composite beams (Withdrawn in the UK, replaced by BS EN 1994-1-1:	Part 3: 1990	Design in composite construction - Code of practice for design of simple and continuous composite beams (Withdrawn in the UK, replaced by BS EN 1994-1-1: 2004)
	Part 4: 1994	2004) Code of practice for design of composite slabs with profiled steel sheeting (Withdrawn in the UK, replaced by	Part 4: 1994	Code of practice for design of composite slabs with profiled steel sheeting (Withdrawn in the UK, replaced by BS EN 1994-1-1: 2004)
	Part 5: 1998	BS EN 1994-1-1: 2004) Code of practice for design of cold formed thin gauge sections (Withdrawn in the UK, replaced by BS EN 1993-	Part 5: 1998	Code of practice for design of cold formed thin gauge sections (Withdrawn in the UK, replaced by BS EN 1993-1-3: 2006)
	Part 6: 1995	1-3: 2006) Code of practice for design of light gauge profiled steel sheeting (Withdrawn in the UK, replaced by BS EN 1993-1-3: 2006)	Part 6: 1995	Code of practice for design of light gauge profiled steel sheeting (Withdrawn in the UK, replaced by BS EN 1993-1-3: 2006)
	Part 7: 1992	Specification for materials and workmanship: cold formed sections	Part 7: 1992	Specification for materials and workmanship: cold formed sections
	Part 8: 2003	Code of practice for fire resistant design (Withdrawn in the UK, replaced by BS EN 1993-1-2: 2005)	Part 8: 2003	Code of practice for fire resistant design (Withdrawn in the UK, replaced by BS EN 1993-1-2: 2005)
	BS 499-2c: 1999	Welding terms and symbols. Part 2c : European arc	BS 499-2c: 1999	Welding terms and symbols. Part 2c : European arc welding symbols in chart form
	BS 5427-1: 1996	welding symbols in chart form Code of practice for the use of profiled sheet for roof and	BS 5427-1: 1996	Code of practice for the use of profiled sheet for roof and wall cladding on buildings. Part 1: Design
	BS 7608: 1993	wall cladding on buildings. Part 1: Design Code of Practice for Fatigue Design and Assessment of	BS 7608: 1993	Code of Practice for Fatigue Design and Assessment of Structures
	BS EN 1090-2: 2008	Structures Execution of steel structures and aluminium structures.	BS EN 1090-1: 2009+A1:201	Part 1: Requirements for conformity assessment of
	Part 2 : Technical requirements for the execution of structures	Part 2: Technical requirements for the execution of steel	BS EN 1090-2: 2008	structural components Execution of steel structures and aluminium structures. Part 2: Technical requirements for the execution of steel
	DS EN 1331-2. 2003	on bridges	BS EN 1991-2: 2003	structures Eurocode 1: Actions on structures. Part 2: Traffic loads on bridges

¹¹¹ Revision of updated standards.

Item	Current version	Amendments
112. Page Index of Annex A ¹¹²	ANNEX A REFERENCES 341 A1 ACCEPTABLE STANDARDS AND REFERENCES 341 A1.1 Steet materials 341 A1.2 Castings and forgings 343 A1.3 Bolts 344 A1.4 Welding 347 A1.5 Materials for composite design 350 A1.6 Shear studs 350 A1.7 Cold-formed steel materials 350 A1.7 Cold-formed steel materials 350 A1.8 Dimensions and tolerances of sections 351 A1.9 Protective treatment 353 A1.10 Other acceptable references 353 A2 INFORMATIVE REFERENCES 354 A2.1 Practice Notes for Authorized Persons and Registered Structural Engineers 354 A2.2 The Steel Construction Institute, UK 354 A2.3 UK and European Standards 355 A2.5 General references 355 A2.5 General references 355	ANNEX A REFERENCES
113. Annex D1 ¹¹³	D1 TESTING TO ESTABLISH STEEL CLASS	D1 TESTING TO ESTABLISH STEEL CLASS
	Class 2 steel:	Class 1 steel and Class 1H steel:
	Where steel is not supplied in accordance with one of the recognized	No additional testing is needed as these steels comply with one of the
	reference material standards in Annex A1.1 and the supplier has an	reference material standards in Annex A1.1 and the basic requirements
	acceptable quality assurance system, testing should be carried out to	given in clause 3.1.2, and the steels are produced from a manufacturer
	establish compliance with one of the five reference material standards in	with an acceptable Quality Assurance system.
	Annex A1.1. Tests shall include tensile strength and ductility, notch	
	toughness and chemical composition. At a minimum one test in each	Class 2 steel:
	category shall be made for every 20 tonnes of steel or part thereof the	Where steels are not supplied in accordance with one of the
	same product form, of the same range of thickness or diameter, and of	recognized reference material standards in Annex A1.1 but are
	the same cast. The results of each test and the characteristic value	produced from a manufacturer with an acceptable Quality Assurance
	obtained by statistical analysis shall not be less than the value required	system, such steels shall be tested to show that they comply with

Revision of page index of Annex A.
Addition for Class 1 and Class 1H steel; Revision of Class 2 and Class 3 steel.

Item	Current version	Amendments
	by the standard. Table D1a below lists the essential performance	one of the reference material standards in Annex A1.1.
	requirements for hot rolled structural steel sections, flats, plates and hot	Tests shall include tensile strength and ductility, notch toughness and
	finished and cold formed structural hollow sections. Table D1b lists	chemical compositions.
	the essential performance requirements for structural sections of cold	At a minimum one test in each category shall be made for every 20
	formed steel.	tonnes of steels or part thereof the same product form, of the same
	Class 3 steel:	range of sizes and thicknesses, and of the same cast.
	Uncertified steel shall be tested for tensile strength and ductility to	The results of each test and the characteristic value obtained by statistical
	demonstrate that it has a yield strength of at least 170N/mm², an	analysis shall not be less than the value required by the standard.
	elongation of at least 15% and an ultimate tensile strength of at least	
	300N/mm ² . One test in each category shall be made for every 20	Class 3 steel:
	tonnes of steel or part thereof the same product form, of the same	Uncertified steels shall be tested for tensile strength and ductility to
	thickness or diameter. If the steel is to be welded, the Responsible	demonstrate that they have a yield strength of at least 170N/mm ² , an
	Engineer may additionally require tests for weldability as described in	elongation of at least 15% and a tensile strength of at least
	Annex D1.1.	300N/mm ² . One test in each category shall be made for every 20
	Quality control of testing	tonnes of steels or part thereof the same product form, of the same
	The testing shall be carried out to meet the reference material standards	range of sizes and thicknesses. If the steels are to be welded, the
	given in Annex A1.1 by a HOKLAS accredited laboratory or by other	Responsible Engineer may additionally require tests for weldability as
	laboratory accreditation bodies which have reached mutual recognition	described in Annex D1.1.
	agreements/arrangements with HOKLAS.	Quality control of testing
		The testing shall be carried out to meet the reference material standards
		listed in Annex A1.1 by a HOKLAS accredited laboratory or by other
		laboratory accreditation bodies which have reached mutual recognition
		agreements/arrangements with HOKLAS.

Item	Current version	Amendments
114. Annex D1.1 ¹¹⁴	D1.1 Essential requirements	D1.1 Essential requirements
	Strength:	The basic requirements for structural steels are:
	The design strength shall be the minimum yield strength but no	t • Strength
	greater than the minimum tensile strength divided by a materia	Resistance to brittle fracture
	factor with a minimum value of 1.2.	Ductility
	Resistance to brittle fracture:	Weldability
	The minimum average Charpy V-notch impact test energy at the	e
	required design temperature shall be in accordance wit	Table D1a lists the essential performance requirements for typical hot
	clause 3.2 of the Code in order to provide sufficient note	rolled sections and plates, and hot finished and cold formed structural
	toughness.	hollow sections. Table D1b lists the essential performance requirements
	Ductility:	for typical cold formed thin gauge steel.
	The elongation on a gauge length of $5.65\sqrt{S_0}$ is not to be less that	n
	15% where S _o is the cross sectional area of the section.	
	Weldability:	
	The chemical composition and maximum carbon equivalent	ıt
	value for Class 1 steel shall conform to the respective reference	e
	materials standard in Annex A1.1.	
	The maximum carbon equivalent value for steels to Class 2 sha	1
	not exceed 0.48% on ladle analysis and the carbon content sha	1
	not exceed 0.24%. For general applications the maximum	n
	sulphur content shall not exceed 0.03% and the maximum	n
	phosphorus contents shall not exceed 0.03%. When throug	h
	thickness quality (Z quality) steel is specified the sulphur content	ıt

¹¹⁴ Revision of basic requirement of structural steel with simplified description.

Item	Current version					Amendments	
	grades of steel in the national	shall also conform to standards where they d to weld Class 3 stee	cal compositions of various the requirements stipulate are manufactured.	ed			
115. Table D1a ¹¹⁵	le D1a ¹¹⁵ Table D1a - Essential performance requirements for hot rolled and hot finished structural steel and cold formed steel					rformance requirements for h	not rolled and hot finished
	Performance requirement	Specified by	Additional requirements for steel in structures designed by the plastic theory		Performance requirement	Specified by	Additional requirements for steel in structures designed by the plastic theory
	Minimum yield strength	Smaller of yield strength (R_{oB}), 0.2% proof strength ($R_{oo.2}$) and stress at 0.5% total elongation ($R_{o.s}$)	R _o /R _{eH} ≥ 1.2 (1.2 is a minimum and a higher value may be required)		Minimum yield strength	Smaller of yield strength (R_{oH}) . 0.2% proof strength (R_{oo2}) and stress at 0.5% total elongation (R_{oo2})	R _m /R _{ett} ≥ 1.2 (1.2 is a minimum and a higher value may be required)
	Minimum tensile strength	Tensile strength (R _n)			Minimum tensile strength	Tensile strength (R _n)	
	Notch toughness	Minimum average Charpy V-notch impact test energy at specified temperature	None		Notch toughness	Minimum average Charpy V-notch impact test energy at	None
	Ductility	Elongation in a specified gauge length Bend test	Stress-strain diagram to have a plateau at yield stress extending for at least six times the yield strain. The elongation on a gauge length of $5.85 \ V_{\rm S_1}$ is not to be less than 15% where $S_{\rm n}$ is the cross sectional area of the section		Ductility	specified temperature Elongation in a specified gauge length Bend test	Stress-strain diagram to have a plateau at yield stress extending for at least six times the yield strain. The elongation refers to Clause 3.1.2
	Weldability	Weldability Maximum carbon equivalent None value, Carbon content, Sulphur and Phosphorus contents	Weldability	Maximum carbon equivalent value, Carbon content, Sulphur and Phosphorus contents	None		
	Through thickness properties (only for certain situations, see 3.1.5 and 14.3.3.4)	Elongation to failure in the through thickness direction	stion to failure in the None		Through thickness properties (only for certain situations, see 3.1.5 and 14.3.3.4)	Elongation to failure in the through thickness direction	None

¹¹⁵ Revision of ductility performance requirement.

Item	Current version	Amendments
116. Annex D1.2 ¹¹⁶	D1.2 Additional requirements for high strength steels	
	Steel for plates and section with a yield strength greater than 460 N/mm ²	
	but not exceeding 690 N/mm ² shall comply with the basic requirements	
	given in Table D1a. It shall be produced by a manufacturer in	
	accordance with an acceptable quality assurance system. Data shall be	
	available to show that the specified properties in terms of yield strength,	
	tensile strength, Charpy impact energy and chemical composition are	
	consistently obtained. A minimum of one test in each category shall	
	be made for every 20 tonnes of steel or part thereof the same product	
	form, of the same range of thickness or diameter, and of the same cast.	
	The category, thickness or diameter range should be classified in the	
	same way as the product standard.	

¹¹⁶ Deletion of Annex D1.2.

Item	Current version	Amendments
117. Annex D1.3 ¹¹⁷	D1.3 Design strength for high strength steels	
	High strength steels with yield stresses above 460 N/mm ² but	not
	exceeding 690 N/mm ² typically obtain their strength throug	ı a
	quench and tempering heat-treatment process and are know	as
	RQT steels. This presents additional constraints in terms	of
	fabrication and design, particularly with welding because	eat
	may affect the strength of the parent steel.	
	Different manufacturers use different manufacturing proce	ses
	and chemical compositions for steel and therefore	the
	Responsible Engineer should obtain the particular production	uct
	specification and ensure that it complies with the requirem	nts
	for design strength, buckling characteristics, ducti	ity,
	weldability requirements, welding consumable requirem	nts
	(under matched / matched / over-matched), pre-	eat
	requirements, inter-pass temperature limits, etc.	
118. Annex D1.4 ¹¹⁸	D1.4 Quality control of testing	D1. 2 Quality control of testing
	The testing shall be carried out to meet the reference mate	The testing shall be carried out to meet the reference material
	standards as contained in Annex A1.1 by a HOKLAS accred	ted standards as contained in Annex A1.1 by a HOKLAS
	laboratory or by other accredited laboratories which h	accredited laboratory or by other accredited laboratories which
	reached mutual recognition agreements/arrangements	ith have reached mutual recognition agreements/arrangements
	HOKLAS.	with HOKLAS.

Deletion of Annex D1.3.
Renumbering of Annex D1.4 to D1.2.

Item			(Current ve	rsion	Amendments						
119. Table D2 ¹¹⁹	Table D2 -		n material p Source	roperty requiren Yield Strength Y ₈ N/mm²	nents for various hig Ultimate Strength U ₃ N/mm²	gh strength steels Elongation	Table D2 -		naterial pr Source	roperty requirem Yield Strength Y ₈ N/mm ²	nents for various h Ultimate Strength U ₈ N/mm ²	igh strength steels Elongation
	Bisplate	60	Australia	500	590-730	20%	Bisplate	60	Australia	500	590-730	20%
		70	1	600	690-830	20%	Biopiato	70	7 tootrana	600	690-830	20%
		80	1	690	790-930	18%		80		690	790-930	18%
	HT690	70	Japan	590	690	(Min 20% reqd.)	LITCOO					
	HT780	80		685	780	(Min 20% reqd.)	HT690	70	Japan	590	690	(Min 20% reqd.)
	RQT	601	UK	620	690-850	(Min 20% regd.)	HT780	80		685	780	(Min 20% reqd.)
	RQT	701	"	690	790-930	(Min 20% regd.)	RQT	601	UK	620	690-850	(Min 20% reqd.)
	HPS	485W	USA	485	750-550	(Min 20% reqd.)	RQT	701		690	790-930	(Min 20% reqd.)
			USA		-	1	HPS	485W	USA	485	-	(Min 20% reqd.)
	ASTM A913	70		485	620	16%	ASTM A913	70		485	620	16%
	ASTM A514	100		690	760 – 895	18%	ASTM A514	100		690	760 – 895	18%
	S500Q		Europe	440 - 500	540 – 590	(Min 20% reqd.)	S500Q		Europe	440 - 500	540 – 590	Refers to
	S550Q			490 - 550	590 - 640	(Min 20% reqd.)	S550Q			490 - 550	590 - 640	Clause 3.1.2
	S620Q			560 - 620	650 - 700	(Min 20% reqd.)	S620Q			560 - 620	650 - 700	
	S690Q			630 - 690	710 - 770	(Min 20% reqd.)	S690Q			630 - 690	710 - 770	
	Note: The m	inimum elor	gation limit is 1	5% for all steel.								
20. Table D4 ¹²⁰	Table D4	Various	normally u	and holt atrangth			Table D4 - Va	rious norr	mally used	d bolt strengths	i	
	Table D4 - Various Bolt source and grade		Design shear str p _q (N/mm ²)	Design bearing stress p _b (N/mm ²)	Design tensile stress p _y (N/mm²)	Ultimate tensile strength p _u (N/mm²)	Bolt source and grade	Design s strength (N/mm²)	p _q l	Design bearing strength p _b (N/mm²)	Design yield strength p _y (N/mm²)	Minimum tensile strength (N/mm²)
	ISO 8.8		375	1	1	800	ISO 4.6	16	<u>, </u>	460	240	400
	ISO 10.9		400		1	1000						
	130 10.9		700	1300	700	1000	ISO 6.8	24		900	440	600
							ISO 8.8	37		1000	560	800
							ISO 10.9	40		1300	700	1000
							ISO 12.9	48	0	1600	840	1200

Revision of elongation for source of steel from Europe; Deletion of minimum elongation limit. Addition of bolt grade ISO 6.8 and 12.9.