Code of Practice for the Structural Use of Steel 2011

The Buildings Department (BD) has set up a Technical Committee (TC) to, among others, collect and consider the views and feedback from the building industry arising from the use of the Code of Practice for the Structural Use of Steel 2011 (Steel Code 2011). Taking into account the advice of the TC, the following amendments to Steel Code 2011 have been promulgated and Steel Code 2011 (2023 Edition) incorporating all these amendments has been uploaded to BD website www.bd.gov.hk:

- (a) Appendix A November 2016;
- (b) Appendix B May 2021; and
- (c) Appendix C March 2023.

(YU Po-mei, Clarice) Building Authority

Ref. : BD GR/1-55/110 (VII) First issue March 2023 (AD/NB2)

Amendments to Code of Practice for the Structural Use of Steel 2011 (November 2016)

Legends:

Revision/Addition

(3/2023)

Major amendments to the Code of Practice for the Structural Use of Steel 2011 in November 2016 included:

- updating the characteristic strength of reinforcement bar from 460 N/mm² to 500 N/mm² in accordance with the latest reinforcement bar standard CS2:2012 and the parameters of characteristic resistance of headed shear stud in different grades of concrete shown in Table 10.7;
- (b) including an additional Table 12.2e on strength reduction factors for hot rolled reinforcing bars at elevated temperatures and Chinese standard GB/T 700-2006 in the Acceptable Standard List in Annex Al.1.3;
- (c) explicating the need on second-order direct analysis for members in bending and sensitive to buckling in Equation 6.14 and the term of restrained beam mentioned in Clause 8.2 for consideration of lateral torsional buckling;
- (d) standardizing the two similar terms of "oscillation" and "vibration" to the latter to remove ambiguity and tally with that in the Chinese version; and
- (e) correcting the typo errors on expression of the reduction factor in Equation 9.23 and designation of buckling curves for S460 hot-finished structural hollow section in Table 8.7.

Amendments to the Code of Practice for Structural Use of Steel 2011	(November 2016)
---	-----------------

Item	Clause/ Annex	Current Version		Amendments		Remarks
1	Clause 1.1 – para. 9	Section 5 contains particular requirements and structural dynamics including serviceability criter buildings. The section also covers durability and p	ia for wind induced oscillation of tall	Section 5 contains particular requirements an structural dynamics including serviceability cri buildings. The section also covers durability a	teria for wind induced vibration of tall	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.
2	Clause 1.2.5 – para. 3	Serviceability limit states correspond to limits bey are no longer met. Examples are deflection , win vibration and durability .		Serviceability limit states correspond to limits be are no longer met. Examples are deflection , w vibration and durability .		
3	Clause 2.2 Table 2.1 - Limit states				The terms "Vibration" and "Wind induced	
5	- Table 2.1	Ultimate limit states (ULS)	Serviceability limit states (SLS)	Table 2.1 - Limit states Ultimate limit states (ULS)	Serviceability limit states (SLS)	
	- 14010 2.1	Strength (including general yielding, rupture, buckling and forming a mechanism)	Deflection		Deflection	oscillation" stated in Table 2.1 are amended to "Human induced vibration" and "Wind
		Stability against overturning, sliding, uplift and sway stability	Vibration	Stability against overturning, sliding, uplift and sway stability	Human induced vibration	induced vibration" respectively.
		Fire resistance	Wind induced oscillation	Fire resistance	Wind induced vibration	
		Brittle fracture and fracture caused by fatigue	Durability	Brittle fracture and fracture caused by fatigue	Durability	
		Note:- For cold-formed steel, excessive local deformation is to b	e assessed under ultimate limit state.	Note:- For cold-formed steel, excessive local deformation is to	o be assessed under ultimate limit state.	
4	Clause 2.3.3 – para. 3	Situations where fatigue resistance needs to be considered include the following: Where there are wind-induced oscillations due to aerodynamic instability. Normal fluctuations in wind loading need not be considered. Structural members that support heavy vibratory plant or machinery. Members that support cances as defined in clause 13.7. Bridge structures, which will normally be designed to a bridge design code.		 Situations where fatigue resistance needs to be considered include the following: Where there are wind-induced vibrations due to aerodynamic instability. Normal fluctuations in wind loading need not be considered. Structural members that support heavy vibratory plant or machinery. Members that support cranes as defined in clause 13.7. Bridge structures, which will normally be designed to a bridge design code. 		The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.
5	Clause 2.4 – para. 1	AUSC Serviceability limit states consider service requirements for a structure or structural element under normally applied loads. Examples are deflection, human induced element under normally applied loads.		SERVICEABILITY LIMIT STATES (SLS Serviceability limit states consider service requelement under normally applied loads. Exan vibration, wind induced vibration and durability.	, uirements for a structure or structural nples are deflection, human induced	

6	Clause 5.2 - Table 5.1	Note: Exceedance of the above limit is not acceptable unless a full justification is provided. Precamber deflection can be deduced in the deflection calculation. Ponding should nevertheless be avoided in all cases. Long span structures should be checked against vibration and oscillation.	Note: Exceedance of the above limit is not acceptable unless a full justification is provided. Precamber deflection can be deduced in the deflection calculation. Ponding should nevertheless be avoided in all cases. Long span structures should be checked against <u>vibration</u> .	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency hence the word "oscillation" is deleted.
7	Clause 5.3	WIND-INDUCED OSCILLATION Vibration and oscillation of a structure should be limited to avoid discomfort to users and damage to contents. For special structures, including long-span bridges, large stadium roofs and chimneys, wind tunnel model tests are recommended for their wind resistant design to meet serviceability limits.	WIND-INDUCED VIBRATION Vibration of a structure should be limited to avoid discomfort to users and damage to contents. For special structures, including long-span bridges, large stadium roofs and chimneys, wind tunnel model tests are recommended for their wind resistant design to meet serviceability limits.	
8	Clause 5.3.2	Serviceability limit state The serviceability limit states on oscillation, deflection and acceleration should be checked to ensure serviceable condition for the structure.	Serviceability limit state The serviceability limit states on vibration, deflection and acceleration should be checked to ensure serviceable condition for the structure.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.
9	Clause 5.3.3.1	Natural frequencies Structural analysis programmes should be used to determine the natural frequencies of vibration of buildings and structures to mitigate excessive horizontal oscillation and vertical vibration. Empirical formulae can also be used for approximated vibration analysis of typical and regular buildings.	Natural frequencies Structural analysis programmes should be used to determine the natural frequencies of vibration of buildings and structures to mitigate excessive horizontal and vertical vibration. Empirical formulae can also be used for approximated vibration analysis of typical and regular buildings.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency hence the word "oscillation" is deleted.
10	Clause 5.3.5	Serviceability criteria for communication and broadcasting towers Communication and broadcasting services demand minimal disruption to transmission. The serviceability limits for communication and broadcasting towers are selected to meet the performance specifications of antennae and other transmission devices to be mounted on those towers. Excessive oscillation and vibration of towers should be avoided. For design, reference should be made to specialist literature.	Serviceability criteria for communication and broadcasting towers Communication and broadcasting services demand minimal disruption to transmission. The serviceability limits for communication and broadcasting towers are selected to meet the performance specifications of antennae and other transmission devices to be mounted on those towers. Excessive vibration of towers should be avoided. For design, reference should be made to specialist literature.	
11	Clause 6.8.3 – equation 6.14	Member lateral-torsional and torsional buckling checks are carried out separately or alternatively by replacing M_{cx} in the above equation by the buckling resistance moment M_b in Equations 8.20 to 8.22. If moment equivalent factor m_{LT} is less than 1, both Equation 6.12 or 6.13 and Equation 6.14 are required for member resistance check. $\frac{F_c}{A_g p_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} = \frac{F_c}{A_g p_y} + \frac{m_L \tau [\overline{M}_x + F_c (\Delta_x + \delta_x)]}{M_b} + \frac{m_y [\overline{M}_y + F_c (\Delta_y + \delta_y)]}{M_{cy}} \le 1 (6.14)$ The equivalent uniform moment factor m_{LT} for beams and the moment equivalent factor m_y for flexural buckling can be referred to Tables 8.4 a & b and Table 8.9.	Member lateral-torsional and torsional buckling checks are carried out separately or alternatively by replacing M_{cx} in the above equation by the buckling resistance moment M_b in Equations 8.20 to 8.22. If moment equivalent factor m_{LT} is less than 1, both Equation 6.12 or 6.13 and Equation 6.14 are required for member resistance check. $\frac{F_c}{A_g p_y} + \frac{M_x}{M_{cx}} + \frac{M_y}{M_{cy}} = \frac{F_c}{A_g p_y} + \frac{m_{LT} [\overline{M_x} + F_c(\Delta_x + \delta_x)]}{M_b} + \frac{m_y [\overline{M_y} + F_c(\Delta_y + \delta_y)]}{M_{cy}} \le 1 (6.14)$ The equivalent uniform moment factor m_{LT} for beams and the moment equivalent factor m_y for flexural buckling can be referred to Tables 8.4 a & b and Table 8.9. For members in bending and sensitive to buckling, imperfection on both axes should be considered if effective length has reduction in capacity about buckling in both axes.	For second-order direct analysis, imperfections in both axes should be considered for members in bending about strong axis and sensitive to lateral torsional buckling.

12	Clause 8.2 – para.1	RESTRAINED BEAMS Restrained beams refer to beams provided with full la and with full torsional restraint at their ends. In such should not occur before plastic moment capacity.	Restrained beams refer to beams provided with full lateral restraint to their top flanges and with nominal torsional restraint at their ends. In such a case, lateral-torsional buckling should not occur before plastic moment capacity.				Torsional restraint requirement of beams at the ends to prevent lateral torsional buckling is revised from full restraint to nominal restraint			
13	Clause	Table 8.7 - Designation of buckling curves for differ	ent section typ	es		Table 8.7 - Designation of buckling curves for diffe	erent section type	es		True amon on designation of healthing summer
15	8.7.6 -	Type of section	Maximum thickness (see note1)		is of kling y-y	Type of section	Maximum thickness (see note1)		s of kling y-y	Typo error on designation of buckling curves for the grade of hot-finished structural hollow
	Table 8.7	Hot-finished structural hollow sections with steel grade > \$460 or hot-finished seamless structural hollow sections		a ₀)	a ₀)	Hot-finished structural hollow sections with steel grade > S460 or hot-finished seamless structural hollow sections		a ₀)	a ₀)	section less than or equal to S460 is rectified.
		Hot-finished structural hollow section < grade S460		a)	a)	Hot-finished structural hollow section <grade s460<="" td=""><td></td><td>a)</td><td>a)</td><td></td></grade>		a)	a)	
		Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)	Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)	
		Rolled I-section	≤ 40 mm > 40 mm	a) b)	b) c)	Rolled I-section	≤ 40 mm > 40 mm	a) b)	b) c)	
		Rolled H-section	≤ 40 mm > 40 mm	b) c)	c) d)	Rolled H-section	≤ 40 mm b) c) > 40 mm c) d)			
		Welded I- or H-section (see note 2)	≤ 40 mm > 40 mm	b) b)	c) d)	Welded I- or H-section (see note 2)	≤ 40 mm > 40 mm	b) b)	c) d)	
		Rolled I-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	a) b)	b) c)	Rolled I-section with welded flange cover plates with $0.25 \le U/8 \le 0.80$ as shown in Figure 8.4)	≤ 40 mm > 40 mm	a) b)	b) c)	
		Rolled H-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) c)	c) d)	Rolled H-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4) Rolled I or H-section with welded flange cover plates	≤ 40 mm > 40 mm ≤ 40 mm	b) c) b)	c) d) a)	
		Rolled I or H-section with welded flange cover plates with $U/B \ge 0.80$ as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) c)	a) b)	with U/B \geq 0.80 as shown in Figure 8.4) Rolled I or H-section with welded flange cover plates	≥ 40 mm > 40 mm ≤ 40 mm	c)	b) c)	
		Rolled I or H-section with welded flange cover plates with U/B \leq 0.25 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) b)	c) d)	with U/B \leq 0.25 as shown in Figure 8.4)	> 40 mm < 40 mm	b)	d) b)	
		Welded box section (see note 3)	≤ 40 mm > 40 mm	b) c)	b) c)	Welded box section (see note 3)	≤ 40 mm > 40 mm ≤ 40 mm	b) c)	c)	
		Round, square or flat bar	≤ 40 mm > 40 mm	b) c)	b) c)	Round, square or flat bar	≤ 40 mm > 40 mm	b) c)	b) c)	
		Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections	240 1111	, í	axis: c)	Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections NOTE:		Any a	ixis: c)	
		 NOTE: 1. For thickness between 40mm and 50mm the value of p_e may be taken as the average of the values for thicknesses up to 40mm and over 40mm for the relevant value of p_p. 2. For welded I or H-sections with their flarges thermally cut by machine without subsequent edge grinding or machining, for buckling about the y₁ axis, struct urue b) may be used for flarges up to 40mm thick, and struct curve c) for flarges over 40mm thick. 3. The category "welded box section" includes any box section fabricated from plates or rolled sections, provided that all of the longitudinal welds are near the comers of the cross-section. Box sections with longitudinal stiffeners are NOT included in this category. 4. Use of buckling curves based on other recognized design codes allowing for variation between load and material factors and calibrated against Tables 8.8(a₀), (a) to (h) is acceptable. See also footnote under Table 8.8. 				 thicknesses up to 40mm and over 40mm for the relevant value. For welded 1 or H-sections with their flanges thermally cut by machining, for buckling about the y-y axis, strut curve b) may 1 curve c) for flanges over 40mm thick. The category "welded box section" includes any box secti provided that all of the longitudinal welds are near the con longitudinal stiffeners are NOT included in this category. Use of buckling curves based on other recognized design c 	machining, for buckling about the y-y axis, strut curve b) may be used for flanges up to 40mm thick and strut curve c) for flanges over 40mm thick. 3. The category "welded box section" includes any box section fabricated from plates or rolled sections, provided that all of the longitudinal welds are near the corners of the cross-section. Box sections with longitudinal stiffeners are NOT included in this category. 4. Use of buckling curves based on other recognized design codes allowing for variation between load and material factors and calibrated against Tables 8.8(a), (a) to (h) is acceptable. See also foothote under			

14	Clause 9.3.6.1.6 – equation 9.23	Bolts through packing When a bolt passes through packing with thickness t_{pa} greater than one-third of the nominal diameter d , its shear capacity P_s should be reduced by multiplying a reduction factor β_p obtained from: $\beta_p = \left(\frac{9d}{8d+3t_{pa}}\right) \leq 10$ (9.23) For double shear connections with packing on both sides of connecting member, t_{pa} should have the same thickness; otherwise, the thicker t_{pa} should be used. This provision does not apply to preloaded bolt (friction-type) connections when working in friction, but does apply when such bolts are designed to slip into bearing.	Bolts through packing When a bolt passes through packing with thickness t_{pa} greater than one-third of the nominal diameter d , its shear capacity P_s should be reduced by multiplying a reduction factor β_p obtained from: $\beta_p = \left(\frac{9d}{8d+3t_{pa}}\right) \leq 1.0$ (9.23) For double shear connections with packing on both sides of connecting member, t_{pa} should have the same thickness; otherwise, the thicker t_{pa} should be used. This provision does not apply to preloaded bolt (friction-type) connections when working in friction, but does apply when such bolts are designed to slip into bearing.	Typo error on the upper bound of equation 9.23 in calculating the reduction factor β_p is rectified.
15	Clause 10.1.3	Reinforcement Reinforcement shall comply with HKCC, and the characteristic strength, f_{y_2} , shall not be larger than 460 N/mm ² . The elastic modulus shall be taken as 205 kN/mm ² , i.e. same as that of structural steel sections. Different types of reinforcement may be used in the same structural member.	Reinforcement Reinforcement shall comply with HKCC, and the characteristic strength, f_{y_2} shall not be larger than 500 N/mm ² . The elastic modulus shall be taken as 205 kN/mm ² , i.e. same as that of structural steel sections. Different types of reinforcement may be used in the same structural member.	The characteristic strength of reinforcement bar is changed to 500N/mm ² to meet with the latest reinforcement bar standard CS2:2012
16	Clause 10.3.2.2 - Table 10.7	Table 10.7 - Characteristic resistance P_k of headed shear studs in normal weight concreteCharacteristic resistance of headed shear studs P_k (kN)Dimensions of headed shearCube compressive strength of concrete, f_{au} Nominal diameterMinimum height as-welded heightC25C30C40C45C50C55C60(mm)(mm)(mm)(mm)(mm)111.4126.9141.7155.9169.7176.7176.7176.722959595111.4126.9141.7155.9169.7176.7176.7176.722958889.9102.4114.3125.8136.8	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	 (a) The column "Nominal height" is deleted. (b) The minimum as-welded height of 25mm shank diameter shear stud is amended. (c) The corresponding characteristic resistances of headed shear stud for various concrete cube strengths are revised.

17	Clause	DESIGN PRINCIPI	LES	DESIGN PRINCIPLES	The design strength of reinforcement bar is		
1,	12.1	structures which deal	provide guidance on fire resistant design in steel and composite is primarily with minimising the risk of structural collapse and of fire through the structure.	This section aims to provide guidance on fire resistant design in steel and composite structures which deals primarily with minimising the risk of structural collapse and restricting the spread of fire through the structure.	changed to 500N/mm ² to meet the latest reinforcement bar standard CS2:2012		
		The fire resistant design following materials:	gn method is applicable to steel and composite structures with the	The fire resistant design method is applicable to steel and composite structures with the following materials:	Tennorcement bar standard C32.2012		
		Structural steel:	Hot rolled steel sections with design strengths equal to or less than 460 N/mm ² .	Structural steel: Hot rolled steel sections with design strengths equal to or less than 460 N/mm ² .			
			Cold formed steel sections with design strengths equal to or less than 550 N/mm ² .	Cold formed steel sections with design strengths equal to or less than 550 N/mm ² .			
		Concrete:	Normal weight concrete with cube strengths equal to or less than 60 N/mm ² .	Concrete: Normal weight concrete with cube strengths equal to or less than 60 N/mm ² .			
		Reinforcement:	Cold worked reinforcing bars with design strengths equal to or less than 460 N/mm ² .	Reinforcement: Cold worked reinforcing bars with design strengths equal to or less than 500 N/mm ² .			
			other than those listed above, refer to specialist design ernatively, passive fire protection method should be adopted.	For steel materials other than those listed above, refer to specialist design recommendations. Alternatively, passive fire protection method should be adopted.			
18	Clause			Table 12.2e - Strength reduction factors for hot rolled reinforcing bars at elevated temperatures	A table extracted from BS EN 1992-1-2:2004		
	12.1.4 -		-	Temperature (°C) Strength reduction factors	showing the strength reduction factors for hot		
	Table			(20 °C) (1.00 (100 °C) (1.00	rolled bars at elevated temperatures is added.		
	12.2e			200 °C (1.00)			
	(added)			(<u>300 °C)</u> (<u>1.00</u>) (400 °C) (<u>1.00</u>)			
				500 °C 0.78 600 °C 0.47			
				700 °C			
				800 °C 0.11 900 °C 0.06			
				(1000 °C) (0.04)			
				(1100 °C) (0.02) (1200 °C (0.00)			
19	Clause	Serviceability issu	Jes	Serviceability issues	The terms "oscillation" and "vibration" are		
	13.2.5	° °	bility issues shall be addressed for towers and masts:	The following serviceability issues shall be addressed for towers and masts:	collectively read as "vibration" for		
			oscillations of antennas, structural elements and cables. intenance of steelwork can be very difficult, therefore a high quality	 Wind induced vibrations of antennas, structural elements and cables. Access for maintenance of steelwork can be very difficult, therefore a high quality 	consistency.		
		protective syst	em should be specified.	protective system should be specified.			
			ess for purpose (e.g. microwave alignment). es for routine maintenance and inspection shall be designed to take	 Required stiffness for purpose (e.g. microwave alignment). Access facilities for routine maintenance and inspection shall be designed to take 			
		structures but	f the availability and likely competence of staff trained to climb such should normally include ladders fitted with a fall arrest system and ms to rest and safely place work equipment.	into account of the availability and likely competence of staff trained to climb such structures but should normally include ladders fitted with a fall arrest system and regular platforms to rest and safely place work equipment.			

20	Clause 13.2.6	In ad	In addition to the guidance given in clauses 13.2.1 to 13.2.5, special attention should be		Design issues for steel chimneys In addition to the guidance given in clauses 13.2.1 to 13.2.5, special attention should be given to the following in the design of steel chimneys and flues:		oscillatio read	nd "vibration" "vibration"	" are for
		(a) (b) (c)	Wind-excited oscillations should be considered and analyzed by aerodynamic methods. For circular chimneys the simplified method in clause 13.2.8 may be used. Design should be in accordance with the appropriate provisions of the Code and in the acceptable references in Annex A2.1. To control buckling in the case of a thin walled chimney with effective height to diameter ratio of less than 21 and diameter to thickness ratio of less than 130, the ultimate compressive stresses in the chimney structure arising from the three principal load combinations shall be limited to a value calculated in accordance with Table 12.2 of clause 12.1.4 which allows for reduced steel strength at	(a) (b) (c)	Wind-excited vibrations should be considered and analyzed by aerodynamic methods. For circular chimneys the simplified method in clause 13.2.8 may be used. Design should be in adcordance with the appropriate provisions of the Code and in the acceptable references in Annex A2.1. To control buckling in the case of a thin walled chimney with effective height to diameter ratio of less than 21 and diameter to thickness ratio of less than 21 and diameter to the strate arising from the three principal load combinations shall be limited to a value calculated in accordance with Table 12.2 of clause 12.1.4 which allows for reduced steel	consistency.			
			elevated temperatures. If this value exceeds 140 N/mm ² , then a value of 140 N/mm ² shall be used. The value should be reduced further for higher aspect ratios.		strength at elevated temperatures. If this value exceeds 140 N/mm ² , then a value of 140 N/mm ³ shall be used. The value should be reduced further for higher aspect ratios.				

21	Clause	Wind-excited oscillations of circular chimneys	Wind-excited vibrations of circular chimneys	The terms "oscillation" and "vibration" are
	13.2.8	Flexible slender structures are subject to oscillations caused by cross wind and along wind action. Structures with a circular cross section, such as chimneys, oscillate more strongly across than along wind.	Flexible slender structures are subject to vibrations caused by cross wind and along wind action. Structures with a circular cross section, such as chimneys, oscillate more strongly across than along wind.	collectively read as "vibration" for consistency.
		The following simplified approach may be used for across wind oscillation, see also clause 5.3°_{\circ}	The following simplified approach may be used for across wind (vibration, see also clause 5.3:	consistency.
		(a) The Strouhal critical velocity V_{ort} in metres per second for the chimney is to be determined by: $V_{ort} = 5 D_t f$ (13.1) where f (in Hz) is the natural frequency of the chimney on its foundations. This may be calculated analytically or from the following approximate formula for the case of a regular cone: $f = \frac{500(3D_b - D_t \left[\frac{W_s}{W}\right]^2}{h^2}$ (13.2) and h is the height of chimney (in m) D_t is the diameter at top (in m) D_b is the diameter at bottom (in m) W is the mass per metre height at top of structural shell including lining or encasing, if any (in kg) W_s	(a) The Strouhal critical velocity V_{crit} in metres per second for the chimney is to be determined by: $V_{crit} = 5D_t f$ (13.1) where f (in Hz) is the natural frequency of the chimney on its foundations. This may be calculated analytically or from the following approximate formula for the case of a regular cone: $f = \frac{500(3D_b - D_t) \left[\frac{W_s}{W} \right]^{\frac{1}{2}}}{h^2}$ (13.2) and h is the height of chimney (in m) D_t is the diameter at top (in m) D_b is the diameter at bottom (in m) W is the mass per metre height at top of structural shell including lining or encasing, if any (in Kg)	
		(in kg) (b) If V_{ort} exceeds the design wind velocity in metres per second given by the	Wz is the mass per meter height at top of structural shell excluding lining (in kg) (b) If Vcm exceeds the design wind velocity in metres per second given by the	
		following formula $V = 40.4 (q)^{0.5}$ (13.3) where q is the design wind pressure in kN/m ² , severe oscillation is unlikely and no further calculation is required.	following formula $V = 40.4 (q)^{0.5}$ (13.3) where <i>q</i> is the design wind pressure in kN/m ² , severe vibration is unlikely and no further calculation is required.	
		(c) If V_{ort} is less than the design wind velocity, the tendency to oscillate <i>C</i> may be estimated by the following empirical formula: $C = 0.6 + K \left[\frac{10 D_t^2}{W} + \frac{1.5\Delta}{D_t} \right] $ (13.4)	(c) If V_{ext} is less than the design wind velocity, the tendency to oscillate <i>C</i> may be estimated by the following empirical formula: $C = 0.6 + K \left[\frac{10 D_t^2}{W} + \frac{1.5\Delta}{D_c} \right] $ (13.4)	
		 where Δ is the calculated deflection (in m) at the top of the chimney for unit distributed load of 1 kPa. K is 3.5 for all welded construction, 3.0 for welded with flanged and bolted joints and 2.5 for bolted and riveted or all riveted. (d) If C is less than 1.0, severe oscillation is unlikely. If C is between 1.0 and 1.3 the design wind pressure for the chimney should be increased by a factor C². If C is larger than 1.3 stabilizers or dampers should be provided to control the oscillations. 	 where a is the calculated deflection (in m) at the top of the chimney for unit distributed load of 1 kPa. K is 3.5 for all welded construction, 3.0 for welded with flanged and botted joints and 2.5 for botted and riveted or all riveted. (d) If C is less than 1.0, severe vibration is unlikely. If C is between 1.0 and 1.3 the design wind pressure for the chimney should be increased by a factor C². If C is larger than 1.3 stabilizers or dampers should be provided to control the vibrations. 	

22	Clause 13.5.5	 Serviceability issues The following serviceability issues shall be addressed for long span structures: (a) Vibration from crowds. Refer to section 5 of the Code. (b) Wind induced oscillations of roof elements and cables. Fatigue may need to be checked. (c) Access for maintenance of roof steelwork can be very difficult therefore a high quality protective system should be specified for the steelwork. (d) Deflection limits for long span trusses under live and wind loads depend on circumstances. A value of span/360 may be used for preliminary design in the absence of other requirements. Significantly smaller deflection limits will be required for applications such as: aircraft hanger doors and stadia opening roofs. 	 Serviceability issues The following serviceability issues shall be addressed for long span structures: (a) Vibration from crowds. Refer to section 5 of the Code. (b) Wind induced vibrations of roof elements and cables. Fatigue may need to be checked. (c) Access for maintenance of roof steelwork can be very difficult therefore a high quality protective system should be specified for the steelwork. (d) Deflection limits for long span trusses under live and wind loads depend on circumstances. A value of span/360 may be used for preliminary design in the absence of other requirements. Significantly smaller deflection limits will be required for applications such as: aircraft hanger doors and stadia opening roofs. 	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency.
23	Paragraph 13.6.4	Vibration and oscillation Pedestrians can be adversely affected by the dynamic behaviour of footbridges. In addition to the criteria specified in section 5 on Human-Induced Vibration, the natural frequency of a footbridge shall not be less than 3 Hz. If the natural frequency of a footbridge is less than 3 Hz which may lead to unpleasant vibration, the maximum vertical acceleration, <i>a</i> , shall be limited to an appropriate value as given in recognized design guidelines in Annex A2.3 in order to avoid unpleasant vibration.	Vibration Pedestrians can be adversely affected by the dynamic behaviour of footbridges. In addition to the criteria specified in section 5 on Human-Induced Vibration, the natural frequency of a footbridge shall not be less than 3 Hz. If the natural frequency of a footbridge is less than 3 Hz which may lead to unpleasant vibration, the maximum vertical acceleration, $a_{,v}$ shall be limited to an appropriate value as given in recognized design guidelines in Annex A2.3 in order to avoid unpleasant vibration.	The terms "oscillation" and "vibration" are collectively read as "vibration" for consistency hence the word "oscillation" is deleted.
24	Annex A1.1.3	Chinese standards GB/T 247 - 1997 Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel GB/T 709 - 2006 Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel GB/T 1591 - 2008 High strength structural steel GB/T 5313 - 1985 Through thickness properties of steel plates YB 4104 - 2000 Steel plate for high rise building structure GB 50017 - 2003 Code for design of steel structures GB 50205 - 2001 Code for acceptance of construction quality of steel structures	Chinese standards GB/T 247 - 1997 Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel GB/T 700 - 2006 Carbon structural steel GB/T 709 - 2006 Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel GB/T 1591 - 2008 High strength structural steel GB/T 5313 - 1985 Through thickness properties of steel plates YB 4104 - 2000 Steel plate for high rise building structure GB 50017 - 2003 Code for design of steel structures GB 50205 - 2001 Code for acceptance of construction quality of steel structures	The Chinese standard GB/T 700-2006 is added in the Acceptable Standard List.

Amendments to Code of Practice for the Structural Use of Steel 2011 (May 2021)

(3/2023)

Major amendments to the Code of Practice for the Structural Use of Steel 2011 in May 2021 included:

- (a) clause 1.5 addition of a symbol λ_{eff} corresponding to the amendments to clause 8.7.9;
- (b) clause 3.1.2 clarification on the definition of yield strength;
- (c) Table 3.9 addition of BS EN 10268 to supersede the withdrawn BS 1449-1-1.5 & 1.11;
- (d) 3rd paragraph of clause 8.7.9 revision of the formulas defining the effective slenderness ratios about different minor axes;
- (e) clause 11.7.5(iii) deletion of the requirement to submit Welding Procedure Specification prior to the commencement and carrying out of welding works in cold-formed hollow sections;
- (f) Table 11.5 elaboration of the conditions for welding cold-formed areas and adjacent materials;
- (g) clause Al of Annex A addition of a criterion for using the latest version of the standards listed in Annex A;
- (h) clause Al.1.5 of Annex A addition of BS EN 10147:2000; and
- (i) clause A1.7.5 of Annex A addition of BS EN 10268:2006.

Item	Current version Amendments
1. Clause 1.5 ¹	λ_{cr} Elastic critical load factor λ_{cr} Elastic critical load factor
	λ_{L0} Limiting equivalent slenderness (lateral-torsional λ_{eff} Effective slenderness ratio
	buckling) λ_{L0} Limiting equivalent slenderness (lateral-torsional
	buckling)
2. Clause $3.1.2^2$	3.1.2 Design strength for normal strength steels 3.1.2 Design strength for normal strength steels
	The design strength, p_y , for steel is given by: The design strength, p_y , for steel is given by:
	$p_y = \frac{Y_s}{\gamma_{m1}}$ but not greater than $\frac{U_s}{\gamma_{m2}}$ $p_y = \frac{Y_s}{\gamma_{m1}}$ but not greater than $\frac{U_s}{\gamma_{m2}}$
	where where
	Y_s is the yield strength Y_s the yield strength is defined as :
	which is defined as the upper yield strength, (a) the upper yield strength, R_{eH} , the stress
	R _{eH} , the stress at the initiation of yielding at the initiation of yielding for steel
	for steel materials with clearly defined materials with clearly defined yield
	yield point; or 0.2% proof stress, $R_{p 0.2}$, or point; or
	the stress at 0.5% total elongation, $R_{t0.5}$ for (b) if the yield point cannot be clearly
	steel materials with no clearly defined yield defined, then the 0.2% proof stress,
	point, whichever is smaller. In case of $R_{p 0.2}$, or the stress at 0.5% total
	dispute, the 0.2% proof stress, $R_{p 0.2}$, shall elongation, $R_{t 0.5}$ for steel materials
	be adopted. whichever is smaller.

Amendments to the Code of Practice for the Structural Use of Steel 2011 (May 2021)

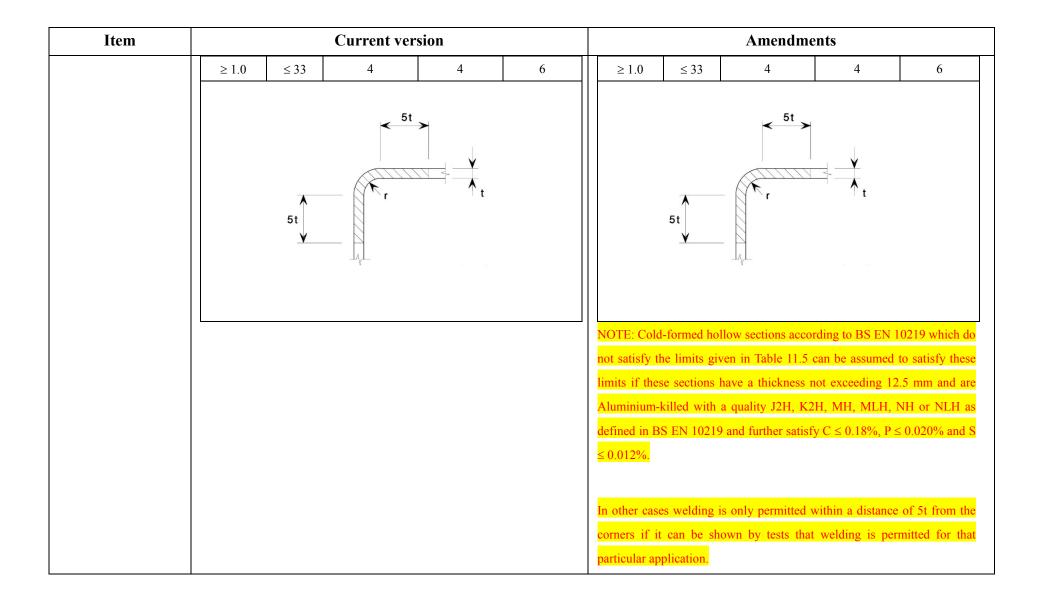
¹ Addition of a symbol λ_{eff} corresponding to the amendments to clause 8.7.9. ² Clarification on the definition of yield strength.

Item	(Current vers	ion			Amendme	nts	
					(c) In case of dispute, the 0.2% proostress, $R_{p 0.2}$, shall be adopted.			
3. Table 3.9 ³	supplied	nd ultimate I in accor standards	e	Table 3.9 - Yield and ultimate strengths for steel supplied in accordance with various nationa standards				
	Type of steel	Grade	Yield strength Ys (N/mm ²)	Tensile strength Us (N/mm ²)	Type of steel	Grade	Yield strength Ys (N/mm ²)	Tensile strength Us (N/mm ²)
	British standard: BS EN 10025 Hot rolled steel sheet of structural quality	S235 S275 S355	235 275 355	360 430 510	British standard: BS EN 10025 Hot rolled steel sheet of structural quality	S235 S275 S355	235 275 355	360 430 510
	British standard: BS EN 10147 Continuous hot dip zinc coated carbon steel sheet of structural quality	S220 G S250 G S280 G S320 G S350 G	220 250 280 320 350	300 330 360 390 420	British standard: BS EN 10147 Continuous hot dip zinc coated carbon steel sheet of structural quality	S220 G S250 G S280 G S320 G S350 G	220 250 280 320 350	300 330 360 390 420

³ Addition of BS EN 10268 to supersede the withdrawn BS 1449-1-1.5 & 1.11.

Item	(Current versi	on			Amendmen	ts	
	British standard:	S315 MC	315	390	British standard:	S315 MC	315	390
	BS EN 10149-	S355 MC	355	430	BS EN 10149-	S355 MC	355	430
	2 & 3	S420 MC	420	480	2 & 3	S420 MC	420	480
	High yield strength				High yield strength			
	steels for cold	S260 NC	260	370	steels for cold	S260 NC	260	370
	forming	S315 NC	315	430	forming	S315 NC	315	430
		S355 NC	355	470		S355 NC	355	470
		S420 NC	420	530		S420 NC	420	530
	British standard:	34/20	200	340	British standard:	34/20	200	340
	BS 1449-1-	37/23	230	370	BS <mark>EN 10268</mark>	37/23	230	370
	1.5 & 1.11	43/25	250	430	Cold-rolled steel	43/25	250	430
	Cold rolled steel	50/35	350	500	high yield strength	50/35	350	500
	sheet based on				for cold forming -			
	minimum strength	40/30	300	400	Technical delivery conditions	40/30	300	400
		43/35	350	430	conditions	43/35	350	430
		40F30	300	400		40F30	300	400
		43F35	350	430		43F35	350	430
	Australia standard:	G250	250	320	Australia standard:	G250	250	320
	AS 1397	G300	300	340	AS 1397	G300	300	340
	Steel sheet and	G350	350	420	Steel sheet and	G350	350	420
	strip	G450	450	480	strip	G450	450	480
		G500	500	520		G500	500	520
		G550	550	550		G550	550	550

Item	C	urrent vers	ion			Amendmer	nts		
	Chinese standard:	Q235	205	-	Chinese standard:	Q235	205	-	
	GB 50018	Q345	300	-	GB 50018	Q345	300	-	
	Technical code of				Technical code of				
	cold-formed thin-				cold-formed thin-				
	wall steel structures				wall steel structures				
4. 3 rd paragraph of	For web members, bu	ckling about	principal az	kes and axes	For web members, bu	ickling about	t principal a	xes and axes	
Clause 8.7.9 ⁴	parallel to the legs			For angle	parallel to the legs sho			•	
	sections connected by								
	ratio should be calcu		the larger o	f the actual	be calculated from the following:				
	member length and the	e following:							
	For buckling about mi	nor v-v axis,			For buckling about v-v axis,				
	$\lambda = 0.35 + 0.7\lambda_v / (93.9)$	9e)			$\lambda_{eff,v} = 0.35 \ge 85.8\varepsilon + 0.7\lambda_v$ or λ_v whichever is larger.				
	For buckling about x-x	axis,			For buckling about x-x	k axis,			
	$\lambda = 0.5 + 0.7\lambda_x / (93.9)$	ε)		(8.76)	$\lambda_{eff,x} = 0.5 \ge 85.8\varepsilon + 0.00$	$0.7\lambda_x$ or λ_x w	hichever is la	<mark>rger.</mark> (8.76)	
	For buckling about y-y	vaxis,			For buckling about y-y	y axis,			
	$\lambda = 0.5 + 0.7\lambda_y / (93.94)$	ε)			$\lambda_{eff,y} = 0.5 \ge 85.8\varepsilon + 0$	$0.7\lambda_y$ or λ_y w	hichever is la	rger.	
	in which $\varepsilon = \sqrt{\frac{275}{p_y}}$	and λ is the	ne effective	slenderness	in which $\varepsilon = \sqrt{\frac{275}{p_y}}$	and λ_{eff} is	the effective	e slenderness	
	ratio. λ_v , λ_x and λ_y a	re respective	ly the slend	erness ratios	ratio. λ_{v} , λ_{x} and λ_{y} a	are respectiv	ely the slend	erness ratios	


⁴ Revision of the formulas defining the effective slenderness ratios about different minor axes.

Item		Current version		Amendments
	about m legs.	inor v-axis and the x- and y-axes parallel to the two	about <mark>th</mark> sections	he minor v-axis, and the x- and y-axes of the angles.
5. Clause 11.7.5(iii) ⁵	11.7.5	 Welding at cold-formed zones Welding may be carried out within a length 5t either side of a cold-formed area, provided that one of the following conditions is satisfied: (i) the cold formed areas are normalized after cold forming but before welding; (ii) the internal radius-to-thickness r/t ratio satisfies the relevant value given in Table 11.5; or (iii) the Responsible Engineer shall submit a Welding Procedure Specification (WPS) as stipulated in clause 14.3.3 for the approval of the Building Authority prior to the commencement and carrying out of welding works in cold-formed hollow sections. 		 Welding at cold-formed zones Welding may be carried out within a length 5t either side of a cold-formed area, provided that one of the following conditions is satisfied: (a) the cold-formed areas are normalized after cold forming but before welding; (b) the internal radius-to-thickness <i>r/t</i> ratio satisfies the relevant value given in Table 11.5; or (c) the welding procedure shall fulfill the Welding Procedure Specification (WPS) as stipulated in clause 14.3.3

⁵ Deletion of the requirement to submit Welding Procedure Specification prior to the commencement and carrying out of welding works in cold-formed hollow sections.

Item			Current ver	sion					Amendme	ents	
6. Table 11.5 ⁶	Table 11.5	Conditio	ns for welding co	old-formed areas	s and adjacent	Table 1	11.5	Conditio	ns for welding c	old-formed area	as and adjacent
		material	8					materials	ŝ		
	Minimum	Strain	Maxir	num thickness (n	nm)	Mini	imum	Strain	Maxin	num thickness (n	ım)
	internal	due to	Gener	rally	Fully killed	inte	ernal	due to	Gener	cally	Fully killed
	radius/	cold	Predominantly	Where	Aluminium-	rad	ius/	cold	Predominantly	Where	Aluminium-
	thickness	forming	static loading	fatigue	killed steel	thick	cness	forming	static loading	fatigue	killed steel
	(r/t) ratio	(%)		predominates	$(AL \ge 0.02)$	(r/t)	ratio	(%)		predominates	$(AL \ge 0.02)$
					%)						%)
	≥ 3.0	≤ 14	22	12	22	≥ 3	3.0	≤ 14	22	12	22
	≥ 2.0	≤ 20	12	10	12	≥ 2	2.0	≤ 20	12	10	12
	≥ 1.5	≤ 25	8	8	10	≥ 1	1.5	≤ 25	8	8	10
					•					•	

⁶ Elaboration of the conditions for welding cold-formed areas and adjacent materials.

Item		Curre	nt version		Am	endments
7. Clause A1 of	A1 ACCEPTABLE STANDARDS AND			A1	ACCEPTABLE S	TANDARDS AND
Annex A ⁷		REFERENCES			REFERENCES	
		This annex conta	ins the standards considered		This annex cont	ains the standards considered
		acceptable to the l	Building Authority to be used		acceptable to the	Building Authority to be used
		together with the Co	de. Where it is intended to use		together with the C	ode. Where it is intended to use
		other standards or te	echnical references it should be		other standards or	technical references, or latest
		demonstrated that t	hey can achieve a performance		version of the stand	lards given in Annex A, it should
		equivalent to the acc	eptable standards as specified in		be demonstrated that	at they can achieve a performance
		the Code.			equivalent to the ac	ceptable standards as specified in
					the Code.	
8. Clause A1.1.5	A1.1.5	UK and Europea	n standards	A1.1.5	UK and Europea	n standards
of Annex A ⁸		BS EN 10025:	Hot rolled products of non-		BS EN 10025:	Hot rolled products of non-
		2004	alloy structural steels -		2004	alloy structural steels -
			Technical delivery			Technical delivery
			conditions.			conditions.
		BS EN 10164:	Steel products with		BS EN 10164:	Steel products with
		2004	improved deformation		2004	improved deformation
			properties perpendicular to			properties perpendicular to
			the surface of the product -			the surface of the product -
			Technical delivery			Technical delivery
			conditions.			conditions.
		BS EN 10210-1:	Hot finished structural		BS EN 10210-1:	Hot finished structural
		2006	hollow sections of non-alloy		2006	hollow sections of non-alloy

 ⁷ Addition of a criterion for using the latest version of the standards listed in Annex A.
 ⁸ Addition of BS EN 10147:2000.

Item	Curre	ent version		Am	endments
	BS EN 10248-1: 1996	and fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10248-1: 1996 BS EN 10147: 2000	and fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions Continuous hot dip zinc coated carbon steel sheet of
					structural quality
9. Clause A1.7.5	A1.7.5 UK, European an	d ISO standards	A1.7.5	UK, European ar	d ISO standards
of Annex A ⁹	BS 5950-7: 1992	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections		BS 5950-7: 1992	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections
	BS EN 10149-1:	Specification for hot-rolled		BS EN 10149-1:	Specification for hot-rolled
	1996	flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions		1996	flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions
	BS EN 10149-2:	Specification for hot-rolled		BS EN 10149-2:	Specification for hot-rolled
	1996	flat products made of high		1996	flat products made of high
		yield strength steels for cold			yield strength steels for cold
		forming. Part 2: Delivery			forming. Part 2: Delivery

⁹ Addition of BS EN 10268:2006.

Item	Curre	ent version	Amendments				
		conditions for thermomechanically rolled steels		conditions for thermomechanically rolled steels			
	BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels	BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels			
	BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements	BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements			
	BS EN 10249-1: 1996	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions	BS EN 10249-1: 1996 BS EN 10268: 2006	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions Cold-rolled steel flat products with high yield strength for cold forming – Technical delivery			

Appendix C (PNAP APP-168)

Amendments to Code of Practice for the Structural Use of Steel 2011 (2021 Edition) (March 2023)

(3/2023)

Major amendments to the Code of Practice for the Structural Use of Steel 2011 (2021 Edition) included:

- (a) clause 1.4.1 revision of "acceptable Q A system" to "acceptable Quality Assurance system";
- (b) clause 2.1.3 revision relating to continuous design of high strength steels;
- (c) clause 3.1.1 and Table 3.1 revision of general information of high strength steels;
- (d) clause 3.1.2 and Table 4.1 revisions of material factors γ_{m1} and γ_{m2} , and the essentials of the basic requirements for various classes of steel;
- (e) Table 3.2 revision of design strength p_y for steels supplied in accordance with BS EN standards;
- (f) Table 3.3 revision of design strength p_y for steels supplied in accordance with Chinese standard GB50017;
- (g) clause 3.2 and Table 3.7 revision of methodology to determine maximum element thickness for prevention of brittle fracture in accordance with EN 1993-1-10;
- (h) clause 3.3.1 revision of limit of ultimate tensile strength for bolts;
- (i) clause 4.2.1 and Table 4.1 revision of material factors for various classes of steel;
- (j) clause 5.5.2.1 revision of galvanizing for high strength steels;
- (k) clause 7.1 revision of general information of high strength steels;

/(1) ...

- (1) Table 8.3 revision of bending strength p_b for welded sections;
- (m) Table 8.5 revision of shear buckling strength q_w for steel sections;
- (n) Table 8.7 revision of selection of buckling curves for different section types;
- (o) Table 8.8 revision of design strength p_c of compression members;
- (p) clause 8.9.3 and Tables 8.10 to 8.12 Alternative method of member buckling resistance;
- (q) Tables 9.2a & 9.2b revision of design strength of fillet welds;
- (r) clauses 9.3.4 & 9.3.6.1.3 and Tables 9.5, 9.6 & 9.8 revision of design parameters for bolts;
- (s) clause 11.7.3 revision of requirements on mechanical properties;
- (t) Table 11.7.5 revision of welding at cold-formed zones;
- (u) clause 12.1.3 revision of fire protection for connection plates and stiffeners;
- Table 14.2b revision of hold time period before non-destructive testing of welds;
- (w) Annex A revisions of acceptable standards and references; and
- (x) Annex D revision of testing requirements of class 1H steel.

Item	Current version	Amendments
1. Clause 1.1 ¹	Design recommendations in Sections 7, 8 and 9 cover the use of hot	Design recommendations in Sections 7, 8 and 9 cover the use of hot
	rolled steel sections, flats, plates, hot finished and cold formed structural	rolled steel sections, flats, plates, hot finished and cold formed structural
	hollow sections with steel grades up to yield stresses of 460 N/mm ² and	hollow sections with steel grades up to yield stresses of 460 $\ensuremath{N/mm^2}$ and
	allow use of yield stresses between 460 N/mm ² and 690 N/mm ² subject	allow use of yield stresses between 460 N/mm^2 and 690 N/mm^2 subject
	to restrictions. A new buckling curve a ₀ is added for hot-finished hollow	to restrictions.
	sections of design strength greater than S460 or hot-finished seamless	
	hollow sections.	
	Section 11 provides simplified guidance on the use of cold-formed thin gauge steel sections with a design yield strength up to 550 N/mm ² . The use of cold formed hollow sections and sheet pile sections are incorporated in this section.	Section 11 provides simplified guidance on the use of cold-formed thin gauge steel open sections and sheet profiles with a design yield strength up to 550 N/mm ² . The use of cold formed hollow sections and sheet pile sections are incorporated in this section.
2. Clause 1.3 ²	In order to provide a single consistent set of standards for steel materials and products, their workmanship and Quality Assurance procedures, such standards and procedures shall generally be defined in the Code or as given in the acceptable references in Annex A1.	In order to provide a single consistent set of standards for steel materials and products, their workmanship and quality assurance procedures, such standards and procedures shall generally be defined in the Code or as given in the acceptable references in Annex A1.

Amendments to Code of Practice for the Structural Use of Steel 2011 (2021 Edition) (March 2023)

General clarification of section description.
 ² General clarification.

Item	Current version	Amendments
3. Clause 1.4.1 ³	acceptable Q A system	acceptable <mark>Quality Assurance</mark> system
	BA The Hong Kong Building Authority	BA The Building Authority
4. Clause 2.1.3 ⁴	In plastic analysis, the joints should have sufficient moment capacity to justify analysis assuming plastic hinges in the members. They should also have sufficient rotational stiffness for in-plane stability. Stability should be properly considered in all the analyses.	In plastic analysis, the joints should have sufficient moment capacity to justify analysis assuming plastic hinges in the members. They should also have sufficient rotational stiffness for in-plane stability. Stability should be properly considered in all the analyses. For steel with yield strengths greater than 460 N/mm ² but less than or equal to 690 N/mm ² , the global elastic analysis shall be adopted to design structural members while the cross section and the member resistances are determined in accordance with the cross-section classifications of the members.
5. Clause 3.1.1 ⁵	 Class 1: Steel complying with one of the reference material standards in Annex A1.1 and basic requirements given in clause 3.1.2 and produced from a manufacturer with an acceptable Quality Assurance system. Class 2: Steel which has not been manufactured to one of the 	 Class 1: Steel complying with one of the reference material standards in Annex A1.1 and basic requirements given in clause 3.1.2 and produced from a manufacturer with an acceptable Quality Assurance system. Class 2: Steel which has not been manufactured to one of the
	reference material standards in Annex A1.1 but is produced	reference material standards in Annex A1.1 but is produced

 ³ General clarification of definitions.
 ⁴ Addition of design philosophy for Class 1H steel.
 ⁵ Revision of Class 1H steel in welded sections for normal use in steel structures and cold-formed steel hollow sections only.

Item		Current version		Amendments
	fr	om a manufacturer with an acceptable Quality Assurance	fi	rom a manufacturer with an acceptable Quality Assurance
	sy	stem. Such steel shall be tested to show that it complies	s	ystem. Such steel shall be tested to show that it complies
	W	ith one of the reference material standards in Annex A1.1	W	with one of the reference material standards in Annex A1.1
	b	efore being used. Requirements on the sampling rate for	b	before being used. Requirements on the sampling rate for
	te	sting are given in Annex D1.	te	esting are given in Annex D1.
	Hot rolled st	eels and cold-formed structural hollow sections are covered	Hot rolled s	teels and cold-formed structural hollow sections are covered
	in clause 3.1	and cold formed steel open sections and profiled sheets are	in clause 3.1	1 and cold formed steel open sections and profiled sheets are
	covered in c	lause 3.8.	covered in c	clause 3.8.
	Subject to ac	ditional requirements and restrictions given in clause 3.1.3,		
	the Code co	vers an additional class of high strength steels with yield		
	strengths gr	reater than 460 $\ensuremath{N/mm^2}$ and not greater than 690 $\ensuremath{N/mm^2}$		
	produced un	der an acceptable Quality Assurance system:		
6. Clause 3.1.1 ⁶	Class 1H:	High strength steels with yield strengths greater than	Class 1H:	High strength steels with yield strengths greater than
		$460 \; \text{N/mm}^2$ but less than or equal to $690 \; \text{N/mm}^2$ and		$460 \; \text{N/mm}^2$ but less than or equal to $690 \; \text{N/mm}^2$ and
		complying with one of the reference material standard in		complying with one of the reference material standard <mark>s</mark> in
		Annex A1.1. Basic requirements for the steel and		Annex A1.1. Basic requirements for the steel and
		producer are given in clause 3.1.3. Requirements on the		producer are given in clause 3.1.2 and high strength steels
		sampling rate for testing are given in Annex D1.		shall be produced from a manufacturer with an acceptable
				Quality Assurance system.
			Class UH:	Ultra high strength steels with yield strengths greater than
	Class UH:	Ultra high strength steel with yield strengths greater than		690 N/mm ² are not covered by the Code. Subject to the

⁶ Addition of acceptable Quality Assurance system to steel manufacturer.

Item	Current version	Amendments
	690 N/mm ² are not covered by the Code. Subject to the approval of the Hong Kong Building Authority, they may be used in bolted tension applications in the form of proprietary high strength tie rods or bars, or in other applications. In these cases, the Responsible Engineer shall provide a full justification and ensure that all requirements are met in the submission of this material to the Hong Kong Building Authority.	approval of the Building Authority, they may be used in bolted tension applications in the form of proprietary high strength tie rods or bars, or in other applications. In these cases, the Responsible Engineer shall provide a full justification and ensure that all requirements are met in the submission of this material to the Building Authority.
7. Clause 3.1.1 ⁷	The Code covers both elastic and plastic analysis and design. Plastic analysis and design is not permitted for uncertified steels or for steels with yield strength greater than 460 N/mm ² . High strength steels may give advantages for certain ultimate limit states but with limited improvement against buckling. Their use does not improve the performance for fatigue and serviceability limit states.	The Code covers both elastic and plastic analysis and design. Plastic analysis and design is not permitted for uncertified steels or for steels with yield strength greater than 690 N/mm ² . High strength steels may give advantages for certain ultimate limit states such as compression resistances in heavily loaded columns and moment resistances in long span beams, but with limited improvement in very slender columns undergoing primarily elastic buckling. Pre-cambering may be adopted to reduce beam deflections under dead and imposed loads 7. Their use does not improve the performance for fatigue and serviceability limit states.

⁷ Revision of yield strength limit of Class 1H steel.

Item		Current version							Ame	ndments		
8. Table 3.1 ⁸	Strength Grade	Class	Acceptable Quality Assurance system	Compliance with reference material Standard	Additional test Required	Remarks	Strength Grade	Class	Acceptable Quality Assurance system	Compliance with reference material Standard	Additional test Required	Remarks
	460 < Ys ≤690	1H	Y	Y	Y	Shall comply with basic requirements. Use is restricted.	460 < Ys ≤690	lH	Y	Y	N	Normal use
9. Clause 3.1.2 ⁹	Design s	Design strength for normal strength steels γ_{m1}, γ_{m2} are the material factors given in Table 4.1. For Class 1				Design s strengtl γm1 , γm2	are th materia	e material fa al factors are	al strength s ctors given i e minimum t be greater t tandards.	n Table 4. values and	1. These I the design	
10. Clause 3.1.2 ¹⁰	• Strength: The design strength shall be the minimum yield strength but not greater than the minimum tensile strength divided by 1.2.				The <mark>Υ_z/γ</mark> ι	nl but not	•	e the minimun he minimum to in Table 4.1.				

 ⁸ Revision of Class 1H steel in welded sections for normal use with no additional test is required.
 ⁹ Revision of material factor and Table 4.1.
 ¹⁰ Revision of material factor and Table 4.1.

Item	Current version	Amendments
11. Clause 3.1.2 ¹¹	• Ductility: The elongation on a gauge length of $5.65\sqrt{S_o}$ is not to be less than 15% where So is the cross sectional area of the section.	 Ductility: The elongation on a gauge length of 5.65√S₀ where S₀ is the cross sectional area of the section, should be as follows: For Classes 1 and 2 steel, the elongation at fracture is not to be less than 15%; For Class 1H steel, the elongation at fracture is not to be less than 10%; and The strain at the tensile strength should not be greater than 15 times the strain at the yield strength.
12. Clause 3.1.2 ¹²	• Weldability: The chemical composition and maximum carbon equivalent value for Class 1 steel shall conform to the respective reference materials standard in Annex A1.1. The minimum requirements on the chemical composition of the materials for Class 2 steel and particularly for Class 3 steel when welding is involved are as follows. The maximum carbon equivalent value shall not exceed 0.48% on ladle analysis and the carbon content shall not exceed 0.24%. For general applications, the maximum sulphur content shall not exceed 0.03% and the maximum phosphorus content shall not exceed 0.03%. When through thickness quality (Z quality) steel is specified, the sulphur content shall not exceed 0.01%.	 Weldability: The chemical composition and maximum carbon equivalent value for Classes 1, 2 and 1H steel shall conform to the respective reference materials standard in Annex A1.1. The minimum requirements on the chemical composition of the materials for Class 3 steel when welding is involved are as follows: a) The maximum carbon equivalent value shall not exceed 0.48% on ladle analysis and the carbon content shall not exceed 0.24%;

 ¹¹ Revision of elongation requirement of Class 1H steel.
 ¹² Revision of requirement of chemical composition.

Item		Current version		Amendments				
	The chemical compositions of various grades of steel shall also conform to the requirements stipulated in the national material standards to which where they are manufactured.			 b) For general applications, the maximum sulphur content shall not exceed 0.03% and the maximum phosphorus content shall not exceed 0.03%; and c) When through thickness quality (Z quality) steel is specified, the sulphur content shall not exceed 0.01%. The chemical compositions of various grades of steel shall also conform to the requirements stipulated in the national material standards to which where they are manufactured. 				
13. Table 3.2 ¹³	BS EN s	rength py for steels supplied i tandards not rolled sections, hot finish ections) Thickness less than or		Table 3.2 - Design strength py for steels supplied in accordance wi BS EN standards (plates, hot rolled sections, hot finished and cold form hollow sections, cold formed sections and profiled sheets) Thickness less than or Design strength				
	Steel grade	equal to (mm)	p _y (N/mm ²)	Steel grade	equal to (mm)	p _y (N/mm ²)		
		16	460		16	460		
		40	440		40	440		
	S460	63	430	S460	63	430		
		80	410		80	410		
		100	400		100	400		
		1		S550	50	550		

¹³ Addition of cold formed sections and profiled sheets to title of Table 3.2 and design strength values for S550 and S690 steel.

Item		Amendments							
		Note that the thickness of the thickest element of the cross section should be used for strength classification of rolled sections.				100 150	530 490		
				S690		50 100 150	690 650 630		
					Note that the thickness of the thickest element of the cross section should be used for strength classification of rolled sections.				
14. Table 3.3 ¹⁴	Chi (pla	Table 3.3 - Design strength py for steels supplied in accordance with Chinese standard GB50017 (plates, hot rolled sections, hot finished and cold formed hollow sections)			Table 3.3 - Design strength pyfor steels supplied in accordance with Chinese standard GB50017 (plates, hot rolled sections, hot finished and cold formed hollow sections, cold formed sections and profiled sheets)				
	Steel grade	Thickness less than or equal to (mm)	Design strength p _y (N/mm ²)	a) Q235 ~ Q460 steel					
	Q235	16 40 60 100	215 205 200 190	Stee grad		Thickness less than or equal to (mm) 16	Design strength p _y (N/mm ²) 215		
	Q345	16 35	310 295	Q23	5	40 100	205 200		
		50 100	265 250	Q34:	_	16	305		
	Q390	16	350	Q35	J	40	295		

¹⁴ Addition of cold formed sections and profiled sheets to title of Table 3.3 and design strength values for Q460 to Q690 steel; Revision of design strength values for Q235 to Q420 steel.

Item	Current version			Amendments			
		35	335			63	290
		50	315			80	280
		100	295			100	270
		16	380			16	345
	0.120	35	360		0200	40	330
	Q420	50	340		Q390	63	310
		100	325			100	295
						16	375
					0.420	40	355
					Q420	63	320
						100	305
						16	410
					Q460	40	390
						63	355
						100	340
				a)	Q550 ~ Q69		
					Steel	Thickness less than or	Design strength
					grade	equal to (mm)	p _y (N/mm ²)
						16	520
						40	500
					Q550	63	475
						80	455
						100	445

Item	Current version	Amendments				
				16	630	
			Q690	40	615	
			Q090	63	605	
				80	585	
15. Table 3.4^{15}	Table 3.4 - Design strength py for North American steel supplied to	Table 3.4 - Design strength py for North American steel supplied to				
	ASTM Standards (plates, hot rolled sections, hot finished and cold	ASTM	I Standards (pla	tes, hot rolled sections, h	rolled sections, hot finished and cold	
	formed hollow sections)	formed hollow sections, cold formed sections and profiled sheets)				
16. Table 3.5 ¹⁶	Table 3.5 - Design strength py for steels supplied in accordance with	Table 3	3.5 - Design stre	ength py for steels supplie	d in accordance with	
	Australian standards (plates, hot rolled sections, hot finished and cold	Australian standards (plates, hot rolled sections, hot finished and cold				
	formed hollow sections)	formed hollow sections, cold formed sections and profiled sheets)				
17. Table 3.6 ¹⁷	Table 3.6 - Design strength py for Japanese JIS SN Steel (rolled steel	Table 3.6 - Design strength py for Japanese JIS SN Steel (rolled steel				
	for building products) to JIS G 3136 supplied in accordance with JIS	for building products) to JIS G 3136 supplied in accordance with JIS				
	standards (plates, hot rolled sections, hot finished and cold formed	standards (plates, hot rolled sections, hot finished and co			ed and cold formed	
	hollow sections)	hollow	low sections, cold formed sections and profiled sheets)			

 ¹⁵ Addition of cold formed sections and profiled sheets to title of Table 3.4.
 ¹⁶ Addition of cold formed sections and profiled sheets to title of Table 3.5.
 ¹⁷ Addition of cold formed sections and profiled sheets to title of Table 3.6.

18. Clause 3.1.3 ¹⁸ 3.1.3	3 Design strength for high strength steels		
		3.1.3	Design strength for <mark>ultra</mark> high strength steels
	For high strength steels with a design strength greater than 460 N/mm^2 and not exceeding 690 N/mm^2 produced in accordance with the basic requirements in Annex D1.1, the design strength p_y may be taken as $Y_s/1.0$ but not greater than $U_s/1.2$, where Y_s and U_s are respectively the minimum yield strength (R_{eH}) and minimum tensile strength (R_m) specified in the relevant reference material standard or derived by the manufacturer using an acceptable Quality Assurance system. These materials typically obtain their strength through a quenching and tempering heat-treatment and there are additional restraints on fabrication and design, particularly with welding, because heat may affect the strength of the parent steel. Bolted connection should be considered for certain high strength steels when welding is not allowed. The Responsible Engineer shall justify each design on a case-by-case basis using justified parameters and formulae proposed by manufacturers and verified by himself. Correct welding procedure specifications are essential and shall be specified. When high strength steel is used in compression, it shall be limited to compact sections where local buckling of outstands will not occur.		For ultra high strength steels with a design strength greater than 690 N/mm^2 produced in accordance with the basic requirements in Annex D1.1, the design strength p_y may be taken as Y_y / γ_{ml} but not greater than U_s / γ_{m2} , where Y_s and U_s are respectively the minimum yield strength (R_{eH}) and minimum tensile strength (R_m) specified in the relevant reference material standard or derived by the manufacturer using an acceptable Quality Assurance system, while γ_{m1} and γ_{m2} are the material factors according to manufacturer's recommendations. These materials typically obtain their strength through a quenching and tempering heat-treatment or a thermo- mechanically controlled process. There are additional restraints on fabrication and design, particularly with welding, because heat may affect the strength of the parent steel.

¹⁸ Revision of design strength of ultra high strength steel.

Item	Current version	Amendments
	are as stated in Annex D1.1 except that the maximum carbon content shall not exceed 0.20% and the maximum sulphur and phosphorus contents shall not exceed 0.025%.	
19. Clause 3.1.5 ¹⁹	3.1.5 Through thickness properties The design strengths given in the standards refer to the longitudinal and transverse directions.	3.1.5 Through thickness properties The essential requirement is an adequate deformation capacity perpendicular to the plate surface to provide ductility and
20. Clause 3.2 ²⁰		toughness against fracture under tension. The design strengths given in most material specifications refer to the longitudinal and transverse directions.
20. Clause 3.2	 3.2 PREVENTION OF BRITTLE FRACTURE Brittle fracture should be avoided by ensuring fabrication is free from significant defects and by using a steel quality with adequate notch toughness as quantified by the Charpy impact properties. The factors to be considered include the minimum service temperature, the thickness, the steel grade, the type of detail, the stress level and the strain rate or level. The welding consumables and welding procedures should also be chosen to ensure the Charpy impact test properties in the weld 	 3.2 PREVENTION OF BRITTLE FRACTURE Brittle fracture should be avoided by ensuring fabrication is free from significant defects and by using a steel quality with adequate notch toughness as quantified by the Charpy impact properties. The factors to be considered include the minimum service temperature, the thickness, the steel grade, the type of detail, the stress level and the strain rate The welding consumables and welding procedures should also be chosen to ensure the Charpy impact test properties in the weld

 ¹⁹ Revision of requirement of through thickness properties.
 ²⁰ Revision of requirement of Prevention of Brittle Fracture.

Item	Current version	Amendments
	or better than the minimum specified for the parent material, see	or better than the minimum specified for the parent material, see
	clause 3.4.	clauses 3.4 and 14.3.
	In Hong Kong the minimum service temperature T_{min} in the steel	In Hong Kong the minimum service temperature T_{min} in the steel
	should normally be taken as 0.1°C for external steelwork. For	should normally be taken as 0.1°C for external steelwork. For
	locations subject to exceptionally low temperatures, such as cold	locations subject to exceptionally low temperatures, such as cold
	storage or structures to be constructed in other countries, T_{min} should be taken as the minimum temperature expected to occur in	storage or structures to be constructed in other countries, T_{min} should be taken as the minimum temperature expected to occur in
	the steel within the design working life.	the steel within the design working life.
	The steel quality to be selected for each component should be such that the thickness I of	
	each element satisfies:	
	t ≤ Kt, (3.1) where K is a factor that depends upon the type of detail, the general stress level, the stress	The guidance given in this section should be used for the selection
	concentration effects and the strain conditions, see Table 3.8; <i>t</i> ₇ is the limiting thickness at the appropriate minimum service temperature <i>T_{min}</i> . For	of material for new construction. It is not intended to cover the
	a given steel grade and quality, the value of t, may be determined from the following:	assessment of materials in service. The rules should be used to select a suitable grade of steel from the steel products as listed in
	$- f T_{27J} \leq T_{min} + 20^{\circ} C;$ $t_1 \leq 50 (1.2)^{ } \left[\frac{355}{Y_{com}} \right]^{1.4} \qquad (3.2)$	Annex A1.
	 If T_{27J} > T_{rele} + 20°C. 	
	$t_1 \le 50 (1.2)^{V} \left(\frac{35 + T_{min} - T_{272}}{15} \right) \left[\frac{355}{Y_{nam}} \right]^{1.4}$ (3.3)	The rules are applicable to tension elements, welded and fatigue stressed elements in which some portions of the stress cycle are
	In which: $N = \left(\frac{T_{min} - T_{2TJ}}{10}\right)$ (3.4)	tensile. Fracture toughness need not be specified for elements
	where (10)	only in compression.
	T _{rot} is the minimum service temperature (in "C) expected to occur in the steel within the design working life of the part;	
	T ₂₇₇ is the test temperature (in °C) for which a minimum Charpy impact value C ₂ of 27J is specified in the product standard. Y _{NM} is the nominal yield stress (in N/mm ²) for the specified thickness, this may be	The rules shall be applied to the properties of materials specified
	taken as the design strength p _j .	for the toughness quality in the relevant steel product standard.
	Table 3.7 lists values of t _i for the normal strength range and T_{277} values.	Material of a lower grade shall not be used even though test results
		show compliance with the specific grade.

		Current ver	sion	Amendments					
		kness t₁ (mm) for i value and strength	minimum service te i grade of steel	mperature (°C),	3.2.1	Procedure			
Strength	Specified	temperature for 27.	minimum in Charpy	(test (°C)					
Grade	0	-20 -3		-60					
215	101	145 17		301	3.2.1.1	The steel grade should be selected after taking	g accoun		
235	89	128 15		266					
						a) Steel material properties:			
275	71	103 12		213					
310	60	87 10		180		 Yield strength depending on the r 	naterial		
350	51	73 8	8 127	152					
355	50	72 8	6 124	149		$\mathbf{p}_{v}(t)$			
380	45	65 7	9 113	136					
460	35	50 6	0 87	104		 Toughness quality expressed in te 	erms of '		
Note, these thickne	lottum od teum soss	ed by the appropriate K	factor from Table 3.8 to	determine the actual					
	for the grade of steel					where T is the temperature under Ch	arpy im		
			t (t) should not exce plies to the selected			and			
hat product typ	e and steel grade	, according to the r	elevant acceptable :						
	the particular stee					J _{min} is the guaranteed value of Charp	y impac		
	ons. Land C shoul	d be related to the :	same element of the	cross-section as					
		Market and a second sec							
the factor K, b			ed above should b	e related to the		b) Member characteristics:			
the factor K, b thickest elemen	ut the maximum t of the cross-sec	tion.				 b) Member characteristics: – Member shape and detail 			
the factor K, b thickest elemen Table 3.8 - Fac	t of the cross-sec tor K for type of	tion. detall, stress level	and strain conditio	008		– Member shape and detail			
the factor K, b thickest elemen	t of the cross-sec tor K for type of	detall, stress level	and strain condition	Components					
the factor K, b thickest elemen Table 3.8 - Fac	t of the cross-sec tor K for type of	detall, stress level Components factor	and strain condition	008		 Member shape and detail Element thickness (t) 			
the factor K, b thickest elemen Table 3.8 - Fac	t of the cross-sec tor K for type of	detall, stress level	and strain condition	Components not subject		– Member shape and detail			
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel	ut the maximum t of the cross-sec tor K for type of s or location	detail, stress level Components factor Stress 2 0.3 Ynce 2	and strain condition in tension due to ed loads Stress < 0.3 Ynor 3	Components not subject to applied tension 4		 Member shape and detail Element thickness (t) Design situations: 			
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes of	ut the maximum t of the cross-sec tor K for type of a or location	detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5	and strain condition in tension due to ed loads Stress < 0.3 Y _{nam} 3 2	Components not subject to applied tension 4 3		 Member shape and detail Element thickness (t) 	vice tem		
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes	ut the maximum t of the cross-sec tor K for type of c or location r reamed holes s (un-reamed)	detail, stress level Components factor Stress 2 0.3 Ynce 2	and strain condition in tension due to ed loads Stress < 0.3Y _{new} 3 2 1.5	Components not subject to applied tension 4 3 2		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server 	vice tem		
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Flame cut edg	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes s (un-reamed) es	tion. detail, stress level Components factor Stress 2 0.3Ynce 2 1.5 1 1 1	and strain condition in tension due to ed loads Stress < 0.3Ynaw 3 2 1.5 1.5	Components not subject to applied tension 4 3 2 2		 Member shape and detail Element thickness (t) Design situations: 	vice tem		
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Filame cut edg Welded, gener	ut the maximum t of the cross-sec tor K for type of s or location r reamed holes s (un-reamed) es rally	detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5 1 1 1 1	and strain condition in tension due to ed loads Stress < 0.3Y _{new} 3 2 1.5	Components not subject to applied tension 4 3 2		 Member shape and detail Element thickness (t) Design situations: Design value of minimum serv T_{min} 			
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Flame cut edg Welded, gener Welded, genta	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes s (un-reamed) es	detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5 1 1 1 1	and strain condition in tension due to ed loads Stress < 0.3Ynaw 3 2 1.5 1.5	Components not subject to applied tension 4 3 2 2		 Member shape and detail Element thickness (t) Design situations: Design value of minimum serv T_{min} 			
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Flame cut edg Welded, gener Welded, partia fillet welds	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes s (un-reamed) es (un-reamed) es rally al penetration and	tion. detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5 1 1 0.8	and strain condition in tension due to ed loads Stress < 0.3 Y _{new} 3 2 1.5 1.5 1.5 1.5	Components not subject to applied tension 4 3 2 2 2 1.5		 Member shape and detail Element thickness (t) Design situations: Design value of minimum serv 			
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Flame cut edg Welded, gener Welded, genta	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes (un-reamed) es rally il penetration and ctions to	tion. detail, stress level Components factor Stress ≥ 0.3Ynee 2 1.5 1 1 1 1	and strain condition in tension due to ed loads Stress < 0.3Ynaw 3 2 1.5 1.5 1.5	Components not subject to applied tension 4 3 2 2 2 2		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for 	from th		
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes of Punched holes Flame cut edg Welded, gener Welded, gener Welded, gener Welded, conne unstiffened flau Welded across	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes (un-reamed) es rally il penetration and ctions to	tion. detail, stress level Components factor Stress 2 0.3 Ynce 2 1.5 1 1 0.8 0.5	and strain condition in tension due to ed loads 3 2 1.5 1.5 1.5 1.5 1 0.75	Components not subject to applied tension 4 3 2 2 2 1.5		 Member shape and detail Element thickness (t) Design situations: Design value of minimum serv T_{min} 	from th		
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Flame cut edg Welded, gener Welded, gener Welded, gener Welded, gener Welded, conne unstiffened flat Welded across plates	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes s (un-reamed) es all penetration and ections to nges, s ends of cover	tion. detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5 1 1 0.8 0.5 0.5	and strain condition in tension due to ed loads Stress < 0.3 Y _{ner} 3 2 1.5 1.5 1.5 1.5 1 0.75	Components not subject to applied tension 4 3 2 2 2 1.5 1 1		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for the condition described in clause 3.2 	from th		
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes of Punched holes Flame cut edg Welded, partia fillet welds Welded conne unstiffened flar Welded across plates NOTE 1 Where p	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes a (un-reamed) es (un-reamed) (un-reamed) es (un-reamed) (un-	tion. detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5 1 1 0.8 0.5 0.5	and strain condition in tension due to ed loads 3 2 1.5 1.5 1.5 1.5 1 0.75 0.75 c deformation at the mini	Components not subject to applied tension 4 3 2 2 2 1.5 1 1		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for 	from th		
the factor <i>K</i> , b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes of Punched holes Flame cut edg Welded, genter Welded, genter fillet welds Welded across plates NOTE 1 Where p tumpon NOTE 2 Breep fil	ut the maximum t of the cross-sec tor K for type of a or location r reamed holes a (un-reamed) es a (un-reamed) es (un-reamed) es a (un-reamed) es a (un-reamed) es a (un-reamed	tion. detail, stress level Components factor Stress 2 0.3 Ynee 2 1.5 1 1 0.8 0.5 0.5 thetand significant plass arrients or crane steps) K multiple of the steps	and strain condition in tension due to ed loads 3 2 1.5 1.5 1.5 1.5 1 0.75 0.75 c deformation at the mini	Components not subject to applied tension 4 3 2 2 2 1.5 1 1 1 num service		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for condition described in clause 3.2 For cold-formed steel sections 	from th .1.3 belo with s		
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Filame cut edg Welded, gener Welded, gener Welded, gener Welded, gener Welded across plates NOTE 1 Where p tempor NOTE 2 Base pl security	ut the maximum t of the cross-sec tor K for type of s or location r reamed holes s (un-reamed) es rally al penetration and retions to nges, s ends of cover nature (such as coach b was whathed to colour in transit, who ad bo	detail, stress level Components factor Stress 2 0.3 Ynce 2 1.5 1 1 0.8 0.5 0.5 0.5 0.5 0.5 arrise or crane stops) K	and strain condition in tension due to ed loads Stress < 0.3 Ynew 3 2 1.5 1.5 1.5 1.5 1.5 0.75 0.75 c deformation at the mini- should be halved y, for the purposes of loc.	Components not subject to applied tension 4 3 2 2 2 1.5 1 1 1 num service tion in use and		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for the condition described in clause 3.2 	from th .1.3 belo with s		
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes of Punched holes Flame cut edg Welded, gener Welded, gener Welded, gener Welded, gener Welded conne unstiffened flan Welded across plates NOTE 1 Where p tempers NOTE 2 Base pli security NOTE 3 Welded NOTE 4 For the security	ut the maximum t of the cross-sec tor K for type of s or location r reamed holes s (un-reamed) es (un-reamed) es (un-reamed) all penetration and ctions to nges, s ends of cover tates are required to w tates (such as crash b was attached to colum in transit, should be a attachments not exce welded condition the (tion. detail, stress level Components factor Stress 2 0.3 Ynce 2 1.5 1 1 1 0.8 0.5 0.5 thistand significant plast arris by normal steps) or crimes when be	and strain condition in tension due to ed loads Stress < 0.3 Ynor 3 2 1.5 1.5 1.5 1.5 1.5 0.75 0.75 c deformation at the mini- should be haived	Components not subject to applied tension 4 3 2 2 1.5 1 1 1 number service tion in use and cover plates. Az shall mesch that		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for condition described in clause 3.2 For cold-formed steel sections 	from th .1.3 bel- with s ole, col		
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes o Punched holes Flame cut edg Welded, gener Welded, gener Welded, gener Welded, gener Welded, gener Welded conne unstiffened flat Welded conne unstiffened flat Welded across plates NOTE 1 Where p tampor NOTE 2 Base phy Security NOTE 3 Welded For the Security	ut the maximum t of the cross-sec tor K for type of s or location r reamed holes s (un-reamed) es (un-reamed) es (un-reamed) all penetration and ctions to nges, s ends of cover tates are required to w tates (such as crash b was attached to colum in transit, should be a attachments not exce welded condition the (tion. detail, stress level Components factor Stress 2 0.3 Ynce 2 1.5 1 1 1 0.8 0.5 0.5 thistand significant plast arris by normal steps) or crimes when be	and strain condition in tension due to ed loads 3 3 2 1.5 1.5 1.5 1.5 1.5 0.75 c deformation at the minis should not be classed as the weld motal and the H	Components not subject to applied tension 4 3 2 2 1.5 1 1 1 number service tion in use and cover plates. Az shall mesch that		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server Tmin Maximum stress σ derived for condition described in clause 3.2 For cold-formed steel sections transverse bending, for example circular and rectangular hollo 	from th .1.3 bel- with s ble, col w sect		
the factor K, b thickest elemen Table 3.8 - Fac Type of details Plain steel Drilled holes of Punched holes Flame cut edg Welded, gener Welded, gener Welded, gener Welded, gener Welded conne unstiffened flan Welded across plates NOTE 1 Where p tempers NOTE 2 Base pli security NOTE 3 Welded NOTE 4 For the security	ut the maximum t of the cross-sec tor K for type of s or location r reamed holes s (un-reamed) es (un-reamed) es (un-reamed) all penetration and ctions to nges, s ends of cover tates are required to w tates (such as crash b was attached to colum in transit, should be a attachments not exce welded condition the (tion. detail, stress level Components factor Stress 2 0.3 Ynce 2 1.5 1 1 1 0.8 0.5 0.5 thistand significant plast arris by normal steps) or crimes when be	and strain condition in tension due to ed loads 3 3 2 1.5 1.5 1.5 1.5 1.5 0.75 c deformation at the minis should not be classed as the weld motal and the h	Components not subject to applied tension 4 3 2 2 1.5 1 1 1 number service tion in use and cover plates. Az shall mesch that		 Member shape and detail Element thickness (t) Design situations: Design value of minimum server T_{min} Maximum stress σ derived for condition described in clause 3.2 For cold-formed steel sections transverse bending, for example 	from th .1.3 bel- with s ble, col w sect		

	3.2.1.2	The permitted thickness of steel elements against brittle
		fracture should be obtained from clause 3.2.2 and Table 3.7.
	3.2.1.3	The maximum stress σ derived of each structural element or
		connection should be determined by elastic analysis after
		considering various load combination including temperature
		effect under serviceability limit states in accordance with
		clause 4.3.7.
	3.2.1.4	The maximum stress σ is determined using an elastic analysis
		under serviceability limit states.
	2.2.2	
		Determination of maximum permissible values of
		element thickness
	Table 3.7	gives the maximum permissible values of element thickness in
	terms of	three stress levels expressed as proportions of the nominal yield
	strength:	
	a)	$\sigma = 0.75 p_{\rm v}(t) \qquad [\rm N/mm^2]$
	b)	$\sigma = 0.50 p_y(t) \qquad [\text{N/mm}^2]$
	c)	$\sigma = 0.25 p_y(t) \qquad [\text{N/mm}^2]$
	where <i>n</i> .	v(t) may be determined either from
	P	
		$p_y(t) = p_y - 0.25t [N/mm^2]$

Item	Current version	Amendments
		where t is the thickness of the plate in mm or taken as R _{eH} -values from the relevant steel material specifications or standards.
		The tabulated values are given in terms of a choice of seven reference temperatures: +10, 0, -10, -20, -30, -40 and -50°C.

Item	Current version							An	nenc	dmei	ıts						
			1	Table 3.	7 N		n permi	sible v	alues of	element	thicknes	s t in n	am Table	4			
		Stoel grade	EN	- grade GBJ, ASTM, JIS, AS, NZ	Delvery condition	Charpy impact energy at T ['C]	10 0	-10 -20 σ=0,75	-30 -40 p,(1)	-50 10	0 -10 σ=0	-20 -30 ,50 p,(1)	-40 -50	10 0	-10 -20 σ= 0,2	0 -30 -4 5 p,(t)	JO -50
		235	JR J0 J2 JR	C	As-rolled	20 27 0 27 -20 27 20 27	60 50 90 75 125 105 55 45	40 35 60 50 90 75 35 30	30 25 40 35 60 50 25 20	20 90 30 125 40 170 15 80	75 65 105 90 145 125 70 55	55 45 75 65 105 90 50 40	40 35 55 45 75 65 35 30	135 115 175 155 200 200 125 110	100 85 135 11 175 15 95 8	5 75 6 5 100 8 5 135 1 0 70 6	6 60 5 75 15 100
		275	JD J2 M(N ML,N	C D B,C	As-rolled TMCP/ Normalized	0 27 -20 27 -20 40 -50 27	75 65 110 95 135 110 185 160	55 45 75 65 95 75 135 110	35 30 55 45 65 55 95 75	25 115 35 155 45 180 65 200	95 80 130 115 155 130 200 180	70 55 95 80 115 95 155 130	50 40 70 55 80 70 115 95	165 145 200 190 200 200 230 200	125 110 165 14 190 16 200 20	0 95 8 5 125 1 5 145 1 0 190 1	0 70 10 95 25 110 65 145
		345, 350, 355	JR J0 J2 K2,M	B C D	As-rolled TMCP/	20 27 0 27 -20 27 -20 40	40 35 60 50 90 75 110 90	25 20 40 35 60 50 75 60	15 15 25 20 40 35 50 40	10 65 15 95 25 135 35 155	55 45 80 65 110 95 135 110	40 30 55 45 80 65 95 80	25 25 40 30 55 45 65 55	110 95 150 130 200 175 200 200	80 70 110 95 150 13 175 15	0 60 9 5 80 7 0 110 9	6 45 0 60 6 80 10 95
		420	ML,N M,N ML,N		Normalized TMCP / Normalized QT	-50 27 -20 40 -50 27 -20 30	155 130 95 80 135 115 70 60	110 90 65 55 95 80 50 40	75 60 45 35 65 55 30 25	50 200 30 140 45 190 20 110	180 155 120 100 165 140 95 75	135 110 85 70 120 100 65 55	95 80 60 50 85 70 45 35	210 200 200 185 200 200 175 155	200 20 160 14 200 18 130 11	0 175 1 0 120 1 5 160 1 5 95 8	30 130 30 85 40 120 50 70
		460	MIN QL MLIN QL1	L C,D D,E	TMCP QT TMCP QT	-20 40 -40 30 -50 27 -60 30	90 70 105 90 125 105 150 125	60 50 70 60 90 70 105 90	40 30 50 40 60 50 70 60	25 130 30 155 40 180 50 200	110 95 130 110 155 130 180 155	75 65 95 75 110 95 130 110	55 45 65 55 75 65 95 75	200 175 200 200 200 200 215 200	155 13 175 15 200 17 200 20	0 115 9 5 130 1 5 155 1 0 175 1	5 80 15 95 30 115 55 130
		550	Q QL QL	C,D	QT	0 40 -20 30 -20 40 -40 30	60 50 75 60 90 75	30 25 40 30 50 40 60 50	20 15 25 20 30 25 40 30	10 80 15 95 20 115 25 135	80 65 95 80 115 95	45 35 55 45 65 55 80 65	30 25 35 30 45 35 55 45	140 120 165 140 185 160 200 185	100 88 120 100 140 12 160 14	0 85 7 0 100 8 0 120 1	5 60 5 75 00 85
			Q	D,E B,C B,C		-40 40 -60 30 0 40 -20 30	110 90 130 110 40 30 50 40	75 60 90 75 25 20 30 25	50 40 60 50 15 10 20 15	30 160 40 185 10 65 10 80	135 115 160 135 1 55 45 65 55	95 80 115 95 35 30 45 35	65 55 80 65 20 20 30 20	200 200 200 200 120 100 140 120	185 160 200 180 85 75 100 80	0 140 1. 5 160 1 5 60 5 5 75 6	100 100 120 0 45 0 50
		690	0L 0L1 0L1	C,D D,E	QT	-20 40 -40 30 -40 40 -60 30	e0 50 75 60 90 75 110 90	40 30 50 40 60 50 75 60	25 20 30 25 40 30 50 40	15 95 20 115 25 135 30 160	80 65 95 80 115 95 135 115	55 45 65 55 80 65 95 80	35 30 45 35 55 45 65 55	165 140 190 165 200 190 200 200	120 10 140 12 165 14 190 16	0 85 7 0 100 8 0 120 1 5 140 1	5 60 5 75 00 85 20 100
			1	and h	ence, Ø= 0. 3.7 has be	25 p _r (t) is en derived	given for in from guars	terpolation intee valu	n purposes es of Char	ost applicati s. Extrapola rpy impact (tions beyo energy in th	nd the ex ne directio	treme va	lues are no rolling of th	ot valid. he produ	ct.	
			4	simila	r steel grad	es Le hav	(ing the sar	ne or simi	lar minimi	to other sti um guaranti hanically co tempering p	ed values	of Charty	v impact	eneray.			

Item	Current version	Amendments
21. Clause 3.3.1 ²¹	Bolts with an ultimate tensile strength exceeding 1000 N/mm ² should not be used unless test results demonstrate their acceptability in particular design application.	
22. Table 3.4 ²²	3.4 WELDING CONSUMABLES All welding consumables shall conform to the requirements of the reference standards given in Annex A1.4. For steel wit design strength not exceeding 460 N/mm ² the specified yiel strength, ultimate tensile strength, elongation at failure an Charpy energy value of the welding consumables shall be equa to or better than the corresponding values specified for the grad of steel being welded. The most onerous grade shall govern if dissimilar grades are welded together. For high and ultra-hig strength steels, the welding material may, if necessary to produc a suitable joint, be of a lower strength; the elongation to failur and Charpy impact value should still match those of the parer	the reference standards given in Annex A1.4. For steel with design strength not exceeding 690 N/mm ² , the specified yield strength, ultimate tensile strength, elongation at failure and Charpy impact value of the welding consumables shall be equal to or better than the corresponding values specified for the grade of steel being welded. The most onerous grade shall govern if dissimilar grades are welded together. For ultra- high strength steels, the welding consumables may, if necessary to produce a suitable joint, be of a lower strength; the
	material. In that case, the design strength of the weld must b based on the weld material.	e those of the parent material. In that case, the design strength of the weld must be based on the weld material.

 ²¹ Revision of limit of ultimate tensile strength of bolt.
 ²² Revision of limit of design strength of steel.

Item	Current version	Amendments
23. Clause 3.8.1.3 ²³	High strength steel with limited ductility	High strength steel strips with limited ductility
	For Class 1H steel strips that failed to comply with the ductility	For high strength S550 steel strips that failed to comply with the
	requirements list in clause 3.8.1.2, the use of steel materials should be	ductility requirements listed in clause 3.8.1.2, the use of steel
	limited to members under lateral loads primarily, and the design yield	materials should be limited to members under lateral loads primarily,
	strength should be reduced as follows:	and the design yield strength should be reduced as follows:
24. Table 3.8 ²⁴	Table 3.9 - Yield and ultimate strengths for steels supplied in	Table 3.8 - Yield and tensile strengths for steels supplied in
	accordance with various national standards	accordance with various national standards
25. Table 3.8 (Cont') ²⁵	Table 3.9 - Yield and ultimate strengths for steels supplied in	Table 3.8 - Yield and tensile strengths for steels supplied in
	accordance with various national standards (continued)	accordance with various national standards (continued)

²³ Addition of high strength S550 steel.
²⁴ Revision of title of Table 3.9.
²⁵ Revision of title of Table 3.9 (continued).

Item	Current version	Amendments
26. Page Index of Clause 3 ²⁶	3 MATERIALS	3 MATERIALS 30 3.1 Structural Steel 30 3.1.1 General 30 3.1.2 Design strength for normal strength steels 31 3.1.3 Design strength for normal strength steels 37 3.1.4 Uncertified steel 37 3.1.5 Through thickness properties 37 3.1.6 Other properties 37 3.2 Prevention of Brittle Fracture 37 3.2.1 Procedures 38 3.2.2 Determination of maximum permissible values of element thickness 39 3.3 Bolts 40 3.3.1 Normel bolts 40 3.3.4 Welding Consumables 40 3.4 Welding Consumables 40 3.5 Steel Castings and Forgings 40 3.6 Materials for Conting of Baseplates 40 3.7 Profied steel sheets 40 3.7 Reinforcement 40 3.7 Areirals for Composite Construction 40 3.7 Profied steel sheets 41 <td< td=""></td<>
27. Clause 4.2.1 ²⁷	For high strength Class 1H steel plates and sections with a yield stress greater than 460 N/mm² and which are supplied from a known source complying with the specification requirements in Annex A1.1 of the Code, the partial material factor γ_{m1} should be 1.0.For ultra high strength Class UH steel plates and sections with a yield 	For high strength Class 1H steel plates and sections with a yield stress greater than 460 N/mm ² but less than or equal to 690 N/mm ² and complying with one of the reference material standards in Annex A1.1 , the partial material factors are given in Table 4.1 For ultra high strength Class UH steel plates and sections with a yield stress greater than 690 N/mm ² and complying with one of the reference material standards in Annex 1.1, the partial material factor should refer to manufacturer's recommendations.

 ²⁶ Revision of page index of Clause 3.
 ²⁷ Revision of Class 1H steel for normal use in steel structures and material factors.

Item	Current version								Amen	dments				
28. Table 4.1 ²⁸	Table 4.1 - Material factors γ_{m1} and γ_{m2} for various classes of steels							Table 4.1 – Material factors γ_{m1} and γ_{m2} for various classes of stee						
	Class	$Y_s \le 460$	0 N/mm ²	$460 < Y_s \le$	690 N/mm ²		Class	$Y_s \le 46$	0 N/mm ²	$460 < Y_s \le$	690 N/mm ²			
		γ_{m1}	γm2	γ_{m1}	γ_{m2}			γ_{m1}	γ_{m2}	γ_{m1}	γ _{m2}			
	1	1.0	1.2	-	-		1	1.0	1.1	-	-			
	2	1.1	1.3	-	-		2	1.1	1.2	-	-			
	3	*	*	-	-		3	*	*	-	-			
	1H	-	-	1.0	1.2		1H	-	-	1.0	1.05			
	metallurgica grade or equ and coated v	l change or a nivalent shou with zinc-ricl	annealing. Ild not be ga 1 or appropr	Bolts of ISO	1	gher	appropriate Hollow sect Some high may be sens care should while specia the risk of c BS EN IS	protective p tions should strength sto sitive to cra l be taken. al dipping p gracking and SO 14713-	baint. I be vented i cels with yic cking during Hence, s procedures s I distortion. 2 has pro	f they are to b eld strength gr g galvanization uitable ventin hall be execute vided further	ted with zinc-rich of e galvanized. eater than 460 N/mn n and therefore speci g should be provide ed in order to allevia guidance, includir cluding steel chemic			

 ²⁸ Revision of material factor for Class 1, Class 2 and Class 1H steel.
 ²⁹ Deletion of restriction of galvanization to steel with design strength greater than 460 N/mm²; Addition of recommendation for cracking due to galvanization with guideline from BS EN ISO 14713-2.

Item	Current version	Amendments
30. Clause 7.1 ³⁰	This section covers steel grades with design strength not greater than 460 MPa and its extension to higher steel grades should be justified.	This section covers steel grades with design strength not greater than 690 N/mm ² and its extension to higher steel grades should be justified.
31. Clause 8.1 ³¹	When Class 3 uncertified steel is used, the buckling curves for the steel material should be obtained from a reliable source and the material buckling strength so determined should be limited to the material strength given in clause 3.1.4. Formulae in this section are applicable to high strength steel of Class 1H provided that it meets the requirements for weldability, strength, ductility and resistance to brittle fracture specified in clause 3.1.3. For design against buckling tests may be required to determine the Robertson constant as defined in Appendix 8.4 where design curves are not available from the manufacturer.	When Class 3 uncertified steel is used, the buckling curves for the steel material should be obtained from a reliable source and the material buckling strength so determined should be limited to the material strength given in clause 3.1.4.
32. Clause 8.2.2.1 ³²	When high or ultra-high strength steel is used, the use of a plastic modulus is not permitted.	When high strength steel is used, the use of a Class 4 slender section is not permitted. When ultra high strength steel is used, the use of a plastic modulus is not permitted.

 ³⁰ Revision of Class 1H steel for normal use in steel structures.
 ³¹ Revision of Class 1H steel for normal use in steel structures; Deletion of condition for design Class 1H steel with formulae in Section 8.
 ³² Revision of section limit for Class 1H steel.

Item	Current version	Amendments
33. Clause 8.3.5.2 ³³	p_b is the buckling strength of the beam, determined from Table 8.3a	p_b is the buckling strength of the beam, determined from Table 8.3a
	for hot-rolled sections and Table 8.3b for welded sections using a suitable equivalent slenderness λ_{LT} in clause 8.3.5.3 and relevant design strength p_y .	for hot-rolled sections and Table 8.3b for welded sections using a suitable equivalent slenderness λ_{LT} in clause 8.3.5.3 and relevant design strength p_y .
	Alternatively, formulae in Appendix 8.1 may be used to compute p_b .	When high strength steel is used, the use of a Class 4 slender section is not permitted. Alternatively, formulae in Appendix 8.1 may be used to compute p_b .
34. Table 8.3b ³⁴	Table 8.3b - Bending strength p_b (N/mm ²) for welded sections	Table 8.3b - Bending strength <i>p</i> ♭ (N/mm²) for welded sections (i) S275 ~ S460 steel

 ³³ Addition of section limit for Class 1H steel.
 ³⁴ Addition of bending strength for S550 and S690 steel.

			~ \$690	~ S690 steel	~ S690 steel	~ S690 steel	~ S690 steel	
			Stre S550					Strength grade and design s
	490		530					
_								
	490 458	527 484			499	543 499	499	543 499
	417	443			455	455	455	455
	381 347	403 366		4	14	14	14	14
	347	300		375				
	315 297	334 319		345 329	i 3	3	3	3
					36	391 369	369	369
	284	303		312	34	345	345	345
	269 254	285 267		293 274	29	321 294	294	294
				252				
	238 219	248 226 205		252 228	20	264 239	239	239
	200	205		208	21	216	216	216
	183 168	187 171		189 173	19	198 179	196 179	196 179
	154 142	157 145		159 146	16	184 150	164	164
	142	145		135	13	130	138	138
	121 113	124 115		125	12	128	128	128
		115		115	11	118	118	118
	105 98 92 86 80	107		107	11	110	110	110
	98	99		100 93	10	102	102	102
	86	93 87 82		87	89	95 89 84	89	89
	80	82		87 82	84	84	84	84
	76	77		77 73	79	79	79	79
	76 71 67	77 72 68		73 68	74	79 74 70	74	74
	64 60	64 61		65 61	66	66 62	66	66
	60	61		61	62	62	62	62
	57	58		58	59	59	59	59
	57 54 51	58 55 52 49 47		58 55 52	56	59 58 53 50 48	56	56
	49 47	49		52 50 47	50	50	50	50
	47	47		47	48	48	48	48
	44	45		45	46	46	46	46
	41 37	41 37		41 38	42	48 42 38 35 32	42	42
	34	3/		35	35	30	30 35	35
	34 32	34 32		35 32	32	32	32	32
	29	29		29		30	30	30
	25.7	24.7	1	24.3	3 22	22.7		

Item	Current version										Am	nendm	ents							
35. Table 8.3c ³⁵	λ _{LT}	Bending s	trength for i	nding stre rolled sectio sign strength Q390		l/mm²)		Bending st	rength for v	velded sect ign strengt Q390				c - Bending <mark>Jending stre</mark> r	ngth for rol	lled sectio	ns		5	
	ALT	215	310	350	380		ALT	215	310	350	380	λ_{LT}	Q235	Q345/Q355	Steel gra	de and desig	gn strength (Q460	Q550	Q	390
	25 30	215 215	310 310	350 350	380 377	[25 30	215 215	310 310	350 350	380 374		215	305	345	375	410	520	615	630
	35 40 45	215 215 212 203	303 289 276	336 321 305	381 344 326		35 40 45	215 215 210 194	296 272 250	324 297 273	344 316 289	25 30 35 40	215 215 215 212	305 305 299 286 272	345 345 332 317	375 373 357 340	410 403 386 387	520 497 473 447	604 577 546 512	618 589 557 522
	50	194	262	288	307		50	178	230	250	265	45	204		302	323	347	419	475	484
	55 60 65 70	185 176 167 158	247 232 218 203	271 254 236 219	288 268 249 230		55 60 65 70	185 152 141 131	211 194 179 173	229 210 201 194	242 225 217 208	50 55 80 65 70	195 186 177 168 159	259 245 230 216 202	285 268 251 234 218	305 286 266 247 229	326 305 283 261 241	389 358 327 298 271	436 396 358 323 291	443 402 363 326 294
	75 80 85 90 95	149 141 133 125 117	189 176 184 152 141	203 188 174 161 149	212 196 180 166 153		75 80 85 90 95	121 115 112 109 105	187 181 154 147 140	185 177 188 180 149	198 188 178 186 153	75 80 85 90 95	150 141 133 125 118	188 175 163 151	202 187 173 160 148	211 195 180 166 153	221 203 187 172 158	246 224 204 186	262 237 215 195 178	264 239 216 196
	100 105 110 115 120	110 103 97 91 86	131 122 114 106 99	138 128 119 110 103	142 131 122 113 105		100 105 110 115 120	102 98 95 91 86	131 122 114 106 99	138 128 119 110 103	142 131 122 113 105	100 105 110 115	111 104 98 92	141 131 122 114 108	137 128 119 110	142 131 122 113	146 135 125 116	171 157 144 133 123	163 150 138 127	179 164 150 138 128
	125 130 135 140 145	81 77 72 68 65	93 87 82 77 72	96 90 84 79 75	98 92 86 81 76		125 130 135 140 145	81 77 72 68 65	93 87 82 77 72	96 90 84 79 75	98 92 86 81 76	120 125 130 135 140 145	87 82 77 73 69 65	99 93 87 82 77 73	103 96 90 85 80 75	106 99 92 86 81 76	108 101 94 88 83 78	114 106 99 93 87 81	118 109 102 95 89 83	118 110 102 95 89 84
	150 155 160 165 170	61 58 55 52 50	68 65 61 58 55	70 68 63 59 56	72 68 64 60 57		150 155 160 165 170	61 58 55 52 50	68 65 61 58 55	70 68 63 59 56	72 68 64 60 57	150 155 160 165 170	62 59 56 53 50	69 65 61 58 55	71 67 63 60 57	72 68 64 61 58	73 69 65 62 58	76 72 68 64 61	78 74 69 66 62	79 74 70 68 62
	175 180 185 190 195	47 45 43 41 39	52 50 47 45 43	53 51 48 46 44	54 51 49 47 44		175 180 185 190 195	47 45 43 41 39	52 50 47 45 43	53 51 48 48 48 44	54 51 49 47 44	175 180 185 190 195	48 46 44 42 38	52 50 47 45 43	54 51 49 48 44	55 52 49 47 45	55 53 50 48 45	57 55 52 49 47	59 56 53 50 48	59 58 53 50 48
	200 210 220 230 240	38 35 32 29 27	41 37 34 32 29	42 38 35 32 30	42 39 35 33 30		200 210 220 230 240	38 35 32 29 27	41 37 34 32 29	42 38 35 32 30	42 39 35 33 30	200 210 220 230 240	38 35 32 30 28	41 38 35 32 30	42 39 35 33 30	43 39 36 33 31	43 40 36 33 31	45 41 37 34 32	46 42 38 35 32	46 42 38 35 32
	250	25	27	28	28		250	25	27	28	28	250	26	27	28	28	29	29	30	30
	λ_{L0}	38.8	32.3	30.4	29.2		$\hat{\lambda}_{L0}$	38.8	32.3	30.4	29.2	2,0	38.8	32.3	30.6	29.4	28.1	25.0	22.9	22.7
		λ _{L0} is the ι	maximum	slenderne	ss ratio of	the me	ember i	having ne	gligible bu	ckling effe	ect.	λ _U	is the max	kimum slende	rness ratio	of the men	nber having	ı negligible	buckling eff	ect.

 ³⁵ Addition of bending strength for Q355, Q550 and Q690 steel; Revision of bending strength for Q345, Q390 and Q420 steel.
 - 28 -

Item	Current version				An	nendm	nents			
			Table 8.3c - Bending strength pb (N/mm²) for other steel source (ii) Bending strength for welded sections Steel grade and design strength (N/mm²)							
		λ_{LT}	Q235	Q345/Q355	Q390	Q420	Q460	Q550	Q	390
		25	215 215	305 305	345 345	375	410 410	520 520	615 594	630 606
		30 35 40 45	215 215 211 194	305 305 293 269 248	345 321 295 270	371 341 313 287	397 365 334 306	477 437 398 361	594 544 496 449 405	606 554 505 457 411
		50 55 80 85 70	179 165 153 141 131	228 209 193 177 171	248 227 209 199 192	263 240 223 215 206	279 255 242 232 222	328 314 298 281 264	382 362 340 316 291	391 369 345 321 294
		75 80 85 90 95	122 116 113 109 106	165 159 152 146 139	184 176 167 159 148	197 187 177 166 153	210 199 187 172 158	246 224 204 186 171	262 237 215 195 178	264 239 216 196 179
		100 105 110 115 120	102 99 95 91 87	131 122 114 106 99	137 128 119 110 103	142 131 122 113 106	148 135 125 118 108	157 144 133 123 114	163 150 138 127 118	164 150 138 128 118
		125 130 135 140 145	82 77 73 69 65	93 87 82 77 73	96 90 85 80 75	99 92 86 81 76	101 94 88 83 78	106 99 93 87 81	109 102 95 89 83	110 102 95 89 84
		150 155 160 165 170	62 59 56 53 50	69 65 61 58 55	71 87 83 80 57	72 68 64 61 58	73 69 65 62 58	76 72 68 64 61	78 74 69 66 62	79 74 70 66 62
		175 180 185 190 195	48 46 44 42 40	52 50 47 45 43	54 51 49 46 44	55 52 49 47 45	55 53 50 48 45	57 55 52 49 47	59 56 53 50 48	59 56 53 50 48
		200 210 220 230 240	38 35 32 30 28	41 38 35 32 30	42 39 35 33 30	43 39 36 33 31	43 40 36 33 31	45 41 37 34 32	46 42 38 35 32	46 42 38 35 32
		250	26	27	28	28	29	29	30	30
		2,00	38.8	32.3	30.6	29.4	28.1	25.0	22.9	22.7
		,	ம is the ma	ximum slend	erness ratio	o of the mer	mber havin	g negligible	buckling e	fect.

Item	Current version	Amendments
36. Table 8.5b ³⁶	Table 8.5b - Shear buckling strength q_w (N/mm ²) of a web (for 16mm $\leq t \leq$ 40mm) 2) Grade S275 steel, web thickness >16mm \leq 40mm – design strength p_v = 265N/mm ²	Table 8.5b - Shear buckling strength q_w (N/mm ²) of a web (for 16mm $\leq t \leq$ 40mm) 2) Grade S275 steel, web thickness >16mm \leq 40mm – design strength ρ_v = 265N/mm ²
	d/t Stiffener spacing ratio a/d	d/t Stiffener spacing ratio a/d
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	80 159 159 159 159 159 159 159 150 151 153 150 148 147 144 142 138 85 159 159 159 159 159 159 159 159 151 152 152 153 143 141 138 132 130 125 90 159 159 159 159 153 147 143 131 135 132 130 128 90 159 159 159 159 159 153 147 143 139 137 135 132 130 128 95 159 159 159 159 154 149 142 137 134 131 124 124 100 159 159 159 156 160 144 137 132 128 124 120 118 113	80 159 159 159 159 159 159 159 159 159 151 153 150 148 147 144 142 138 85 159 159 159 159 159 158 152 148 145 143 141 138 132 90 159 159 159 159 158 153 147 143 131 138 132 90 159 159 159 159 158 153 147 143 139 137 135 132 130 126 90 159 159 159 159 159 133 147 143 131 120 126 124 120 126 124 120 118 113 100 159 159 159 150 144 137 132 126 124 120 118 113
	105 159 159 159 159 159 159 159 169 169 169 169 160 110 100 107 103 115 159 150 152 144 132 122 116 112 110 108 104 103 99 120 159 158 149 140 132 125 117 111 108 105 103 100 98 95 125 159 155 145 136 127 120 112 107 103 100 98 96 91 125 159	105 159 159 159 159 159 152 145 139 132 127 123 120 118 114 112 108 110 159 159 159 156 148 141 134 127 121 117 114 112 109 107 103 115 159 159 159 152 144 138 132 122 118 114 112 109 107 103 120 159 159 152 144 138 132 121 116 112 100 1007 103 120 159 158 149 140 132 125 117 111 108 104 103 96 125 159 155 145 138 127 120 112 107 103 101 99 96 94 91
	130 159 152 141 132 123 116 108 103 99 97 95 92 91 87 135 159 159 154 137 127 119 111 104 99 96 93 92 89 87 84 140 159 158 145 134 123 114 107 100 95 92 90 88 84 81 145 159 155 142 130 119 100 97 92 89 87 84 81 145 159 155 142 130 119 100 97 92 89 87 85 83 81 78 150 159 152 139 126 115 107 100 93 89 86 84 82 80 79 76	130 159 159 152 141 132 123 116 108 103 99 97 95 92 91 87 135 159 159 159 148 137 127 119 111 104 99 96 93 92 89 87 84 140 159 158 145 134 123 114 107 100 95 92 90 88 86 84 81 140 159 155 142 130 119 110 104 97 92 90 88 86 84 81 145 159 155 142 130 119 100 104 97 92 89 87 85 83 81 78 150 159 152 139 126 115 107 100 93 89 86 84 82 80
	155 159 149 135 122 111 103 97 90 86 83 81 80 77 76 73 160 159 147 132 119 108 100 94 87 83 81 79 77 76 71 165 159 144 129 115 105 97 91 85 81 78 76 73 72 69 170 158 141 125 112 102 94 88 82 78 76 74 73 71 69 67 170 158 141 125 112 102 94 88 82 78 76 74 73 71 69 67 175 156 138 122 108 99 91 86 80 76 74 73 71 69 67 65	155 159 149 135 122 111 103 97 90 88 83 81 80 77 76 73 160 159 147 132 119 108 100 94 87 83 81 79 77 75 74 71 165 159 144 129 115 105 97 91 85 81 78 76 75 74 71 169 170 158 141 125 112 102 94 88 82 78 76 74 73 71 69 67 67 132 199 91 88 80 76 74 73 71 69 67 65 67 67 67 65 67 67 65 67 67 67 67 67 67 67 66 67 66 67 65 67 67
	180 153 135 119 105 98 89 83 78 74 72 70 69 67 66 63 185 151 132 115 102 93 86 81 76 72 70 69 67 66 63 180 149 129 112 100 91 84 79 72 70 68 67 66 63 190 149 129 112 100 91 84 79 74 70 68 66 63 62 60 195 146 127 109 97 89 82 77 72 68 68 65 63 62 61 58 200 144 124 107 95 88 80 75 70 67 65 63 62 60 59 57	180 153 135 119 105 96 89 83 78 74 72 70 69 67 66 63 185 151 132 115 102 93 86 81 76 72 70 68 67 65 64 61 190 149 129 112 100 91 84 79 74 70 68 66 63 62 60 190 149 129 112 100 91 84 79 74 70 68 66 63 62 60 195 146 127 109 97 89 82 77 72 68 66 65 63 62 61 58 200 144 124 107 95 86 80 75 70 67 65 63 62 60 59 57 57
	205 141 121 104 92 84 78 73 68 65 63 61 60 59 58 55 210 139 118 102 90 82 76 71 67 64 61 60 59 58 54 215 137 115 99 88 80 74 70 65 62 60 59 58 56 53 220 134 112 97 86 78 73 68 64 61 59 58 56 53 220 134 112 97 86 78 73 68 64 61 59 57 56 55 54 52 225 132 110 95 84 77 71 67 62 59 57 56 55 53 52 50	205 141 121 104 92 84 78 73 68 65 63 61 60 59 58 55 210 139 118 102 90 82 76 71 67 64 61 60 59 58 54 215 137 115 99 88 80 74 70 65 62 60 59 58 55 53 220 134 112 97 88 78 73 68 64 159 57 56 54 52 220 134 112 97 88 78 73 68 64 159 57 56 55 54 52 225 132 110 95 84 77 71 67 62 59 57 56 55 53 52 50
	230 130 108 93 82 75 70 85 61 58 56 55 54 52 51 49 235 127 105 91 81 73 68 64 60 57 55 54 52 51 49 240 125 103 89 79 72 67 63 58 56 54 52 50 49 47 245 123 101 87 77 70 65 61 57 54 53 51 50 49 47 245 123 101 87 77 70 65 61 57 54 53 51 50 49 48 46 250 120 99 85 76 69 64 80 58 53 52 50 49 48 47	230 130 108 93 82 75 70 65 61 58 56 54 52 51 49 235 127 105 91 81 73 68 64 60 57 55 54 53 51 50 48 240 125 103 89 79 72 67 63 58 56 54 52 50 49 47 245 123 101 87 77 70 65 61 57 54 53 51 50 49 47 245 123 101 87 77 70 65 61 57 54 53 51 50 49 48 46 250 120 99 85 76 69 64 80 56 53 52 50 49 48 47 45
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

³⁶ Revision of web thickness.

Item	Current version	Amendments
37. Table 8.5d ³⁷	Table 8.5d - Shear buckling strength q_{w} (Winn ²) of a web (for 46 $s \le 40$ s	Farst a start of the start of

³⁷ Revision of web thickness.

Item	Current version	Amendments								
38. Table 8.5e ³⁸	Table 8.5e - Shear buckling strength q_w (N/mm ²) of a web (for $t \le 16$ mm) 5) Grade Q235 steel, web thickness ≤ 16 mm – design strength $p_c = 215$ N/mm ²	Table 8.5e - Shear buckling strength q_w (N/mm ²) of a web (for $t \le 16$ mm)								
	d/t Stiffener spacing ratio a/d	5) Grade S460 steel, web thickness \leq 16mm – design strength p_v = 460N/mm ⁴ d/t Stiffener spacing ratio a/d								
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 276								
	80 129 129 129 129 129 129 129 129 129 129 129 120 128 120 128 129 129 120 121 110 111	80 276 276 276 276 283 251 241 228 219 213 208 204 198 195 187 85 276 276 276 282 254 241 230 217 207 200 195 192 188 183 176 90 276 276 280 254 231 219 205 195 189 184 176 173 186 95 276 276 289 251 235 221 208 194 185 179 175 172 167 164 157 100 276 276 269 251 235 221 208 194 185 179 175 172 167 164 157 100 276 276 269 241 228 211 198 184 176 170 168 158 156								
	105 129 129 129 129 125 120 115 111 109 105 102 101 97 110 129 129 129 127 122 117 111 107 105 102 101 97 115 129 129 129 127 122 117 111 107 105 102 101 98 96 92 91 115 111 107 105 102 101 98 96 92 98 88 85 81 102 129 129 127 121 118 104 101 98 97 94 92 88 85 81 125 129 129 124 118 112 107 100 96 92 90 89 86 85 81	105 276 276 254 234 216 201 188 176 167 182 158 155 151 148 142 110 276 289 246 226 207 191 180 168 160 155 151 148 144 141 138 120 276 266 231 208 189 176 165 164 144 141 138 130 132 135 130 125 120 276 266 231 208 189 176 165 164 147 142 138 135 130 125 126 126 132 130 126 126 126 144 141 138 134 144 141 138 132 130 126 126 126 126 126 132 130 127 124 120 126 133 130 127								
	130 129 129 122 115 109 103 97 92 89 87 85 83 81 78 135 129 129 127 119 112 105 100 93 89 86 84 82 80 78 75 140 129 129 125 116 109 102 96 90 85 83 81 79 75 73 145 129 129 122 114 106 99 93 86 82 80 78 75 73 145 129 129 122 114 106 99 93 86 82 80 78 74 73 70 150 129 120 111 103 96 90 84 80 77 75 74 72 70 88	130 273 243 216 192 175 162 152 142 135 131 128 125 122 120 115 136 288 237 208 185 168 156 147 137 130 128 123 121 117 115 111 140 282 230 201 178 162 150 141 132 128 121 119 113 111 110 145 257 224 164 172 157 145 138 127 121 117 114 111 100 103 100 107 103 150 257 247 187 167 152 140 132 123 117 114 112 109 107 103 150 257 217 187 167 145 138 127 117 114 112 109								
	155 129 128 117 108 100 92 87 81 77 74 73 71 89 68 65 160 129 128 115 105 97 90 84 78 75 72 70 69 67 66 63 165 129 124 113 103 94 87 81 76 72 70 69 67 66 63 61	155 246 210 181 181 147 138 128 119 113 110 107 105 102 100 98 160 241 204 176 186 142 132 124 115 110 106 102 100 98 165 235 197 170 151 138 128 120 112 107 103 101 90 96 94 91 170 230 192 165 147 134 124 116 108 103 90 96 94 91 170 230 192 165 147 134 124 118 108 100 98 96 93 92 85 175 225 186 160 143 120 113 105 100 97 93 90 89 89 89 89 89 89 <td< td=""></td<>								
	180 129 117 105 94 86 80 75 70 66 64 63 61 60 59 56 185 129 115 103 92 84 77 73 68 64 62 61 60 58 57 55 190 127 133 100 89 81 75 71 68 63 61 50 58 57 55 53 54 52 53 54 52 53 54 52 53 54 52 53 54 52 53 54 52 54 52 54 52 54 52 54 53 51 54 53 51 54 53 51 54 53 51 54 53 51 54 53 51 54 53 51 54 53 51 54 53 51 54	180 219 181 186 139 126 117 110 102 98 94 92 91 88 86 83 185 214 176 152 135 123 114 107 100 95 92 90 88 86 83 190 208 172 148 131 120 111 104 97 93 89 87 86 83 82 76 190 208 167 144 128 117 108 101 95 90 87 86 83 82 77 200 198 163 140 125 114 105 99 92 88 85 81 81 80 77 200 198 163 140 125 114 105 99 92 88 85 81 81 80 77 78 75								
	205 122 107 93 83 75 70 65 61 58 56 54 52 51 49 210 120 105 91 81 74 68 64 60 57 55 54 53 51 50 48 215 119 103 89 79 72 66 62 58 55 54 52 51 49 47 220 117 101 87 77 70 65 54 52 51 50 49 47 220 117 101 87 77 70 65 51 52 51 50 49 48 46 225 115 99 85 75 69 64 60 56 53 51 50 49 48 45	205 193 159 137 122 111 103 96 90 88 83 81 79 77 76 73 210 188 155 134 119 108 100 64 88 84 81 79 78 75 74 71 215 184 152 131 116 106 98 62 88 82 79 77 76 74 71 220 180 148 128 114 103 96 90 84 80 77 75 74 72 70 220 180 148 128 114 103 96 90 84 80 77 75 74 72 70 69 68 225 176 145 125 111 101 94 88 82 78 76 74 72 70 69 68								
	230 113 97 83 74 67 62 58 54 52 50 49 48 47 46 44 235 112 94 81 72 66 61 57 53 51 49 48 47 46 45 43 240 110 92 79 71 64 60 56 52 50 48 47 46 45 43 245 108 90 78 68 52 50 48 47 46 44 42 245 108 90 78 58 55 51 49 47 46 45 44 43 41 250 107 89 78 68 62 57 54 50 48 48 45 44 43 41	230 172 142 122 109 99 92 88 80 76 74 72 71 89 68 65 235 168 139 120 106 97 90 84 78 75 72 71 89 68 64 240 165 138 117 104 95 88 82 77 73 71 69 68 66 64 240 165 138 117 104 93 88 82 77 73 71 69 68 66 65 62 245 161 133 115 102 93 88 81 75 72 69 68 67 66 64 61 250 158 130 112 100 91 84 79 74 70 68 66 65 63 62 60 62 <t< td=""></t<>								
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.								

³⁸ Revision of Table 8.5e - Shear Buckling Strength for S460 steel with web thickness ≤ 16 mm.

Item	Current version	Amendments
39. Table 8.5f ³⁹	Table 8.5f - Shear buckling strength q_w (N/mm ²) of a web (for 16mm $\leq t \leq$ 40mm) 6) Grade Q235 steel, web thickness >16mm \leq 40mm – design strength p_r = 205N/mm ²	Table 8.5f - Shear buckling strength q_w (N/mm ²) of a web (for 16mm < $t \le 40$ mm) 6) Grade S460 steel, web thickness >16mm ≤ 40 mm – design strength $\rho_y = 440$ N/mm ²
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	100 123 123 123 123 123 123 123 120 115 112 109 107 106 104 102 99 105 123 123 123 123 120 116 111 108 105 103 102 100 98 95 110 123 123 123 123 123 120 116 111 108 105 103 102 100 98 95 110 123 123 123 123 123 121 101 102 100 98 96 94 90 115 123 123 123 123 123 123 120 114 100 105 101 98 96 94 90 86 120 123 123 123 123 123 117 111 107 101 97 94 92 90	105 284 284 246 228 211 196 184 172 184 158 152 147 145 139 110 284 261 239 220 202 187 176 164 156 151 148 145 141 138 133 115 284 255 232 212 104 170 168 157 150 145 141 139 135 132 127 120 284 248 225 204 185 157 150 145 141 139 135 132 127 127 1227 1227 1227 1227 1227 127 124 127 127 124 127 127 124 138 133 130 130 137 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127
	130 123 123 123 118 111 105 100 94 90 87 85 83 81 79 76 135 123 123 123 115 108 102 97 91 88 84 82 80 78 76 73 140 123 123 112 113 106 99 94 87 83 81 79 76 74 71 145 123 123 118 110 03 96 91 84 80 76 75 72 71 68 150 123 123 116 100 93 88 82 78 75 72 70 69 66	130 284 236 211 188 171 158 149 139 132 128 125 123 119 117 112 135 289 230 204 181 166 153 143 134 127 123 120 118 115 113 108 140 254 224 196 174 159 147 132 129 123 119 116 114 111 109 104 145 249 218 189 168 153 142 133 124 119 116 114 111 109 104 145 249 218 189 168 153 142 133 124 119 115 112 100 107 105 101 150 244 212 183 168 153 142 133 124 119 115 110 106
	155 123 114 105 97 90 85 79 75 73 71 70 68 67 64 160 123 121 111 102 94 87 82 76 73 70 69 67 66 64 62 165 123 119 109 100 92 85 80 74 71 68 67 66 64 62 170 123 118 107 97 89 82 77 72 69 66 63 62 60 170 123 118 105 95 88 80 75 70 67 64 63 62 61 58 175 123 116 105 95 88 80 75 70 67 64 63 62 60 59 57	155 239 206 177 158 143 133 125 118 111 107 105 103 100 98 94 160 234 199 172 153 139 129 121 113 107 104 101 100 97 95 91 165 229 193 168 148 135 125 117 109 104 101 100 97 95 91 170 224 187 162 144 131 121 114 106 101 98 97 94 92 89 170 224 187 157 140 127 118 111 103 98 97 94 92 89 170 224 187 157 140 127 18 111 103 98 95 94 91 90 86 95 94 88
	180 123 114 102 92 84 78 73 68 65 63 61 60 58 57 55 185 123 112 100 90 82 76 71 68 63 61 59 58 57 56 53 190 123 110 98 87 79 74 69 64 61 59 58 57 55 54 52 51 195 121 108 96 85 77 72 67 63 60 58 56 55 54 52 51 200 120 106 93 83 75 70 66 61 58 56 55 54 52 51 49	180 214 177 153 136 124 114 107 100 98 92 90 89 86 85 81 185 209 172 148 132 120 111 105 97 93 90 88 86 84 82 79 190 204 168 145 129 117 108 102 95 90 88 85 84 81 80 77 195 199 163 141 125 114 108 99 92 88 85 83 82 77 78 75 200 194 159 157 122 111 103 97 90 88 83 82 77 78 75 200 194 159 157 122 111 103 97 90 88 83 81 80 77 76 73
	205 118 104 91 81 74 68 64 60 57 55 54 53 51 50 48 210 116 102 89 79 72 66 62 58 55 54 53 51 50 49 47 215 115 100 87 77 70 65 61 57 54 52 51 50 49 47 215 115 100 87 77 70 65 61 57 54 52 51 50 49 48 220 113 98 85 75 68 63 60 55 53 51 50 49 48 47 45 225 112 96 83 74 67 62 58 54 52 50 49 48 46 44	205 189 155 134 119 108 100 94 88 84 81 79 78 75 74 71 210 184 152 131 118 106 98 92 88 82 79 77 76 74 72 70 215 180 148 128 114 103 94 88 82 78 77 75 74 72 71 88 220 176 145 125 111 101 94 88 82 78 74 72 70 88 82 78 74 72 70 69 68 65 65 65 65 65 66 65 66 65 65 66 65 66 65 66 65 66 65 66 66 66 66 66 66 66 66 66 66 6
	230 110 94 81 72 65 61 57 53 51 49 48 47 45 45 43 235 108 92 79 70 64 59 56 52 49 48 47 46 44 42 240 107 90 78 69 63 58 55 51 48 47 46 44 43 41 245 105 88 76 68 61 57 53 50 47 46 45 44 43 41 245 105 88 76 68 61 57 53 50 47 46 45 44 43 42 40 250 104 87 74 68 60 56 52 49 46 45 44 43 42 41 39 <td>230 168 139 119 106 97 90 84 78 75 72 71 69 67 66 64 235 165 138 117 104 95 88 82 77 73 71 69 68 66 65 62 240 161 133 114 102 93 86 81 75 72 69 68 64 64 63 61 240 161 133 112 100 91 84 76 74 70 68 66 64 63 61 245 158 130 112 100 91 84 76 74 70 68 65 63 62 60 250 155 127 110 98 89 82 77 72 69 67 65 64 62 61 58 </td>	230 168 139 119 106 97 90 84 78 75 72 71 69 67 66 64 235 165 138 117 104 95 88 82 77 73 71 69 68 66 65 62 240 161 133 114 102 93 86 81 75 72 69 68 64 64 63 61 240 161 133 112 100 91 84 76 74 70 68 66 64 63 61 245 158 130 112 100 91 84 76 74 70 68 65 63 62 60 250 155 127 110 98 89 82 77 72 69 67 65 64 62 61 58
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

 $[\]frac{1}{39}$ Revision of Table 8.5f - Shear Buckling Strength for S460 steel with web thickness >16mm \leq 40mm.

Item	Current version Amendments	
40. Table 8.5g ⁴⁰	Table 8.5g - Shear buckling strength q_w (N/mm²) of a web (for $t \le 16$ mm) Table 8.5g - Shear buckling strength q_w (N/mm²) of a web (for $t \le 50$ mm) 7) Grade Q345 steel, web thickness ≤ 16 mm – design strength $p_r = 310$ N/mm² 7) Grade S550 steel, web thickness ≤ 50 mm – design strength $p_r = 550$ N/mm²	
	d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞	
	55 186	7 289 9 270 1 252 3 234
	80 188	0 192 9 182 9 172
	105 188 188 179 169 160 153 144 137 132 129 127 123 121 116 105 330 315 288 280 237 219 206 192 183 177 173 170 165 166 167 167 165 167 165 167 167 165 167 165 167 167 165 167 167 165 167 167 165 167 165 167 167 165 167 167 165 167 167 165 167 167 165 167 165 167 165 167 165 167 165 167 165 167 165 167 165 167 162 157 165 165 167 162 157 165 151 165 151 163 162 167 162 155 150 160 162 <td>5 149 8 142 2 138</td>	5 149 8 142 2 138
	130 188 184 169 155 143 133 124 116 111 107 104 102 99 98 94 90 311 272 238 210 191 177 166 155 148 140 137 133 131 135 188 180 165 151 138 128 120 112 106 103 100 99 96 94 90 135 304 263 227 202 184 171 160 149 142 138 134 132 128 124 111 107 99 96 94 90 135 304 263 227 202 184 171 160 149 142 138 134 132 128 128 124 128 134 132 128 124 128 128 128 128 133 127 128 128	6 121 2 117 7 113
	155 188 168 148 132 120 111 104 97 93 90 87 86 83 82 79 155 176 180 180 144 132 124 120 117 115 112 110 160 183 162 144 128 116 108 101 94 90 87 85 83 81 79 76 160 289 223 192 171 155 144 135 126 120 116 113 111 108 100 165 159 139 124 113 104 98 91 87 84 82 81 77 74 165 280 281 180 160 151 140 131 122 117 113 110 108 106 100 131 122 117 113 110 108 105 100 <	6 102 3 99 0 96
	180 171 148 128 113 103 96 90 84 80 77 75 74 72 70 68 180 180 180 180 180 180 180 180 180 180 180 240 198 171 152 138 128 120 112 107 103 101 99 96 95 185 168 144 124 110 100 93 87 81 78 75 73 72 70 69 66 185 234 193 166 148 134 124 117 109 104 100 98 96 94 92 94 92 94 92 94 92 91 90 98 94 91 90 98 94 92 94 91 90 98 94 91 90 98 98 98 98 <td< td=""><td>91 88 86 84 82</td></td<>	91 88 86 84 82
	205 156 130 112 100 91 84 79 73 70 68 66 65 63 62 59 205 211 174 150 133 121 112 106 98 94 91 89 87 84 83 210 153 127 109 97 88 82 77 72 68 66 64 63 61 60 58 210 206 170 146 130 118 110 103 96 92 89 86 85 82 81 215 150 124 107 95 86 80 76 70 67 64 63 62 60 59 57 215 201 166 143 127 116 107 101 94 88 84 83 80 79 77 77 77 77 77 77	78 76 74
	230 141 116 100 89 81 75 70 65 62 60 59 58 56 55 53 230 188 155 134 119 108 100 94 88 84 81 79 77 76 74 72 240 135 111 98 83 77 72 67 63 60 58 56 54 52 230 188 155 134 119 106 98 62 88 84 81 79 77 76 74 72 240 135 111 98 83 77 72 67 63 66 55 54 53 51 240 180 148 128 114 104 98 90 84 80 77 74 72 71 69 245 54 53 51 51 49 240	71 70 68 67 65
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	

⁴⁰ Revision of Table 8.5g - Shear Buckling Strength for S550 steel with web thickness \leq 50mm.

Item	Current version	Amendments
41. Table 8.5h ⁴¹	Table 8.5h - Shear buckling strength q_w (N/mm ²) of a web (for 16mm $\le t \le$ 35mm) 8) Grade Q345 steel, web thickness >16mm \le 35mm – design strength p_r = 295N/mm ²	Table 8.5h - Shear buckling strength q_w (N/mm ²) of a web (for 50mm < t ≤ 100mm) 8) Grade S550 steel, web thickness >50mm ≤ 100mm – design strength p_r = 530N/mm ²
	d/t Stiffener spacing ratio a/d	d/t Stiffener spacing ratio a/d
	0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 177	0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 318 318 318 318 318 318 318 311 306 301 208 223 290 282 60 318 318 318 318 318 316 305 206 200 282 276 273 265 65 318 318 318 318 303 200 281 276 270 286 282 276 273 265 65 318 318 318 318 303 200 281 276 270 286 260 262 276 260 242 276 270 286 260 242 239 239 239 239 239 239 239 239 241 244 238 233 226
	80 177 177 177 177 177 178 170 185 162 159 157 154 152 147 85 177 177 177 177 177 176 170 168 159 157 154 152 147 95 177 177 177 177 176 170 164 159 155 152 150 147 145 140 90 177 177 177 177 171 171 165 152 149 144 140 138 133 95 177 177 177 176 154 152 149 144 140 138 133 131 128 100 177 177 177 168 161 154 140 138 133 130 128 124 119	80 318 318 318 307 291 276 283 247 238 228 223 219 212 209 189 85 318 318 317 297 297 283 250 233 222 215 210 206 200 197 189 90 318 318 207 286 267 251 230 212 206 200 197 189 95 318 318 269 257 251 230 220 190 192 187 184 178 178 95 318 318 269 256 241 208 190 192 187 174 176 169 100 318 314 288 255 244 226 121 199 182 178 175 170 167 160
	105 177 177 173 163 155 148 140 134 129 126 124 120 118 114 110 177 177 177 188 159 150 143 134 128 123 120 118 114 113 108 115 177 177 175 164 154 145 137 128 123 120 118 115 113 108 104 120 177 177 175 164 154 145 137 128 122 118 115 113 110 108 104 120 177 177 171 159 149 140 132 123 117 113 110 108 105 103 99 125 177 177 167 155 144 135 128 118 112 108 104 101 <	105 318 306 279 255 233 215 202 188 180 174 170 167 162 159 153 110 318 208 270 244 222 206 193 180 172 166 162 159 154 152 146 115 318 290 233 212 197 185 172 164 159 152 148 140 120 316 282 281 221 188 177 165 157 146 142 139 134 125 310 274 241 124 181 170 158 151 146 142 139 134 128
	130 177 177 163 151 139 129 121 113 108 104 102 100 97 95 92 135 177 174 159 146 135 124 117 109 104 100 98 96 93 92 88 140 177 170 155 142 130 120 113 105 100 97 94 93 90 89 85 145 177 167 151 137 125 116 109 101 97 94 93 90 89 85 145 177 167 151 137 125 116 109 101 97 93 91 89 87 85 82 150 177 164 148 133 121 112 105 98 93 90 88 86 84 83	130 303 266 232 208 188 174 163 152 146 140 137 135 131 128 123 135 296 258 223 199 181 167 157 147 140 135 131 128 124 119 140 290 250 215 192 174 161 152 141 135 130 126 124 119 115 146 283 242 208 185 186 146 136 130 127 125 121 119 115 145 278 232 201 179 163 151 142 132 126 121 117 113 111 107
	155 177 160 144 129 117 108 102 95 90 87 85 84 81 80 77 160 176 157 140 125 113 105 98 92 87 85 83 81 79 77 74 165 173 154 138 121 110 102 95 89 85 82 80 79 76 72 72 170 170 150 132 117 107 99 93 88 82 80 78 76 74 73 70 175 168 147 128 114 104 96 90 84 80 77 75 74 72 71 68	155 270 226 194 173 157 146 137 128 122 118 115 113 110 108 104 160 263 219 188 168 153 141 133 124 118 114 111 109 106 104 100 165 266 212 183 162 148 137 129 120 114 111 109 106 104 100 170 250 206 177 158 143 132 125 116 114 111 107 105 104 97 170 260 206 172 153 139 121 113 108 104 102 100 97 95 92 175 243 200 172 153 139 121 113 108 104 102 100 97 95 92
	180 165 144 124 111 101 93 87 82 78 75 73 72 70 69 66 185 162 140 121 108 98 91 85 79 76 73 71 70 68 67 64 190 159 137 118 105 95 88 83 77 74 71 69 68 66 63 195 157 134 115 102 93 86 81 75 72 69 68 66 63 61 200 154 130 112 100 91 84 79 73 70 68 66 63 62 59	180 238 194 187 149 138 126 118 110 105 101 99 97 94 93 89 185 230 189 163 145 132 122 115 107 102 99 96 95 92 90 87 190 223 184 195 141 128 119 112 104 99 96 94 92 89 88 84 195 218 179 155 137 125 116 100 101 99 94 91 88 84 200 212 175 151 134 122 113 106 99 94 91 89 87 85 84 80
	205 151 127 109 97 88 82 77 72 68 66 64 63 61 60 58 210 148 124 107 95 86 80 75 70 67 64 63 62 60 59 57 215 146 121 104 93 84 78 73 68 65 63 61 60 58 57 52 220 143 118 102 90 82 78 71 67 64 63 61 60 58 57 55 54 220 143 118 102 90 82 78 71 67 63 61 60 59 57 56 54 225 140 115 99 88 80 74 70 65 62 60 59 57 56 55 53 </td <td>205 207 171 147 131 119 110 104 97 92 89 87 85 83 81 78 210 202 167 144 128 116 108 101 94 90 87 85 83 81 80 76 215 197 163 140 125 114 103 97 90 88 85 83 81 80 75 220 193 159 137 122 111 103 97 90 88 83 81 79 78 75 220 189 155 134 119 103 97 90 88 83 81 79 78 73 225 189 155 134 119 100 94 88 84 81 79 78 74 71</td>	205 207 171 147 131 119 110 104 97 92 89 87 85 83 81 78 210 202 167 144 128 116 108 101 94 90 87 85 83 81 80 76 215 197 163 140 125 114 103 97 90 88 85 83 81 80 75 220 193 159 137 122 111 103 97 90 88 83 81 79 78 75 220 189 155 134 119 103 97 90 88 83 81 79 78 73 225 189 155 134 119 100 94 88 84 81 79 78 74 71
	230 137 113 97 86 79 73 88 64 61 59 57 56 55 54 52 235 134 111 95 85 77 71 67 62 59 57 56 55 53 53 50 240 132 108 93 83 75 70 65 61 58 56 54 52 51 49 245 129 108 93 83 75 70 65 61 58 56 54 52 51 49 245 129 106 91 81 74 68 64 60 57 55 54 53 51 50 48 250 128 104 89 80 72 67 63 59 54 53 51 49 47	230 185 152 131 117 106 98 92 86 82 79 77 78 74 73 70 235 181 149 128 114 104 96 90 84 80 78 76 74 72 71 68 240 177 146 126 112 102 94 88 82 79 77 74 73 71 70 67 245 173 143 123 109 100 92 87 81 77 74 73 71 70 67 245 173 143 123 109 92 87 81 77 74 73 71 68 <t< td=""></t<>
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁴¹ Revision of Table 8.5h - Shear Buckling Strength for S550 steel with web thickness >50mm \leq 100mm. - 35 -

Item	Current version	Amendments
42. Table 8.5i ⁴²	Table 8.5i - Shear buckling strength q_w (N/mm ²) of a web (for <i>t</i> ≤ 16mm) 9) Grade Q390 steel, web thickness ≤ 16mm – design strength ρ_r = 350N/mm ²	Table 8.5i - Shear buckling strength q_w (N/mm ²) of a web (for $t \le 50$ mm) 9) Grade S690 steel, web thickness ≤ 50mm – design strength $\rho_v = 690$ N/mm ²
	d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.8 2.0 2.5 3.0 ∞	b) Grade S650 steel, web thickness ≤ bumm – design strength p _y = 650N/mm d/t Stiffener spacing ratio a/d
	55 210 210 210 210 210 210 210 210 210 210	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 414 414 414 414 414 402 386 375 367 360 356 348 343 332
	60 210 200 203 201 198 198 191 70 210 210 210 210 210 207 201 197 195 192 189 187 181 75 210 210 210 210 207 207 199 193 189 186 184 180 178 172	55 414 414 414 414 414 402 388 375 367 360 356 348 343 332 80 414 414 414 413 397 382 385 353 344 337 331 323 318 306 65 414 414 414 396 378 383 344 330 320 313 323 318 306 65 414 414 414 400 378 383 344 330 320 313 307 298 293 282 70 414 414 410 376 360 343 323 308 297 200 285 277 272 262 75 414 414 411 385 362 341 323 301 287 278 271 268 258 254 244
	80 210 210 210 210 200 200 191 185 181 178 175 171 168 163 85 210 210 210 202 192 184 177 172 169 166 162 159 153 90 210 210 202 193 185 176 164 160 158 153 150 144 95 210 210 201 186 178 168 161 156 152 149 145 142 137 100 210 210 201 190 180 171 160 153 144 142 138 135 130	80 414 414 397 369 344 322 303 282 269 200 254 249 242 238 229 85 414 414 383 353 327 304 285 266 253 245 239 235 228 224 215 90 414 404 369 338 310 287 299 251 239 231 215 212 203 95 414 392 355 327 272 255 328 237 210 214 203 201 101 201 103 95 414 380 341 306 278 258 236 227 210 214 203 201 101 183 100 414 380 341 306 278 258 226 216 208 200 104 191 183
	105 210 210 208 195 183 173 164 153 148 141 137 135 131 129 124 110 210 203 189 177 186 157 146 139 134 131 129 124 115 210 210 198 184 171 159 150 139 134 131 129 125 123 118 113 120 210 210 198 184 171 159 150 139 133 128 122 123 120 118 113 120 210 210 198 172 153 143 134 127 123 120 118 113 108 125 210 205 188 172 158 146 138 128 122 118 115 113 100 108 104	105 412 368 327 291 265 246 231 215 205 198 194 190 185 182 174 110 402 356 313 278 253 235 220 205 196 189 185 181 176 173 168 115 302 344 209 266 242 224 211 190 187 181 177 174 106 166 159 120 382 331 275 255 232 205 188 179 174 166 161 159 153 120 382 312 275 245 223 206 194 181 172 167 168 160 155 152 148 125 372 319 275 245 223 206 194 181 172 167 163 160 155
	130 210 201 183 167 152 141 132 123 117 114 111 109 106 104 100 135 210 197 178 161 146 136 127 119 113 109 107 105 102 100 96 140 210 192 173 155 141 131 123 114 109 107 105 102 100 96 140 210 192 173 155 141 131 123 114 109 105 101 98 96 93 145 210 188 168 150 132 126 118 110 105 102 99 98 96 93 150 207 184 163 145 132 122 115 107 102 98 96 94 92 90 86	130 383 307 285 235 214 198 188 174 168 160 156 154 149 147 141 135 353 298 255 227 206 191 179 167 160 154 151 148 144 141 138 140 343 285 248 219 199 184 173 181 154 140 143 138 138 131 138 134 131 126 150 333 275 237 204 186 172 161 156 149 143 134 131 126 150 323 266 229 204 186 172 161 151 144 139 133 129 127 122
	155 203 179 158 140 127 118 111 103 98 95 93 91 89 87 84 160 200 175 153 136 123 114 107 100 95 92 90 88 86 84 81 165 196 171 148 132 120 111 104 97 92 89 87 86 83 82 79 170 192 166 144 128 116 108 101 94 90 87 85 83 81 79 76 175 189 162 139 124 113 104 98 91 87 84 82 81 78 77 74	155 313 257 222 197 180 166 156 146 139 134 131 129 125 123 118 160 303 249 215 191 174 161 151 141 135 130 127 125 121 119 114 165 264 242 208 185 168 167 137 131 120 121 119 114 170 285 202 100 164 152 142 133 127 122 121 119 114 170 285 202 100 164 152 142 133 127 122 121 111 118 111 175 277 228 197 175 159 147 138 129 123 119 116 114 111 109 105
	180 185 158 138 121 110 102 95 89 85 82 80 78 76 75 72 185 182 153 132 117 107 99 93 86 82 80 78 76 74 73 70 190 178 149 128 114 104 96 90 84 80 78 76 74 72 71 68 190 174 145 125 111 101 94 88 82 78 76 74 72 71 68 200 171 145 125 111 101 94 88 80 76 74 72 70 69 66 200 171 142 122 108 99 91 86 80 76 74 72 71 69 67 65	180 269 222 191 170 155 143 135 125 120 118 111 108 106 102 185 262 216 186 165 151 139 131 122 116 113 101 108 105 103 99 190 255 210 181 101 147 138 127 119 113 110 102 100 98 94 195 248 206 176 157 133 122 116 110 107 104 102 90 98 94 200 242 200 172 153 129 121 113 104 102 100 97 95 92
	205 167 138 119 106 96 89 84 78 74 72 70 69 67 66 63 210 164 135 116 103 94 87 82 76 73 70 68 67 66 63 215 160 132 113 101 92 85 80 74 71 68 67 66 64 62 215 160 132 113 101 92 85 80 74 71 68 67 66 64 62 220 157 129 111 99 90 83 78 73 69 67 66 64 62 61 59 225 153 128 108 96 88 81 76 71 68 65 64 63 61 60 57	205 236 195 168 149 136 126 118 110 105 102 99 97 95 93 89 210 231 190 164 146 133 123 115 108 103 99 97 95 92 91 87 215 225 186 160 142 130 120 113 105 100 97 95 93 89 85 220 220 11 158 127 117 110 103 89 95 92 91 88 87 83 225 215 177 153 138 124 115 108 100 96 93 90 89 85 81
	230 150 123 106 94 86 79 75 69 66 64 62 61 60 59 56 235 146 120 104 92 84 78 73 68 65 63 61 60 58 57 55 240 143 118 102 90 82 76 71 67 63 61 60 59 56 240 143 118 102 90 82 76 71 67 63 61 60 59 56 54 245 140 116 99 88 80 74 70 65 62 60 59 58 56 53 250 138 113 97 87 79 73 69 64 61 59 57 58 55 54 52	230 211 174 150 133 121 112 105 98 94 91 88 87 84 83 80 235 206 170 146 130 118 110 103 96 92 89 86 85 82 81 78 240 202 166 143 127 116 107 101 94 90 87 85 83 81 79 76 245 198 163 140 125 114 105 99 86 85 83 81 79 78 75 250 194 160 138 122 111 103 97 90 86 83 81 79 78 75 250 194 160 138 122 111 103 97 90 86 83 81 80 78 78 73
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁴² Revision of Table 8.5i - Shear Buckling Strength for S690 steel with web thickness \leq 50mm.

⁴³ Revision of Table 8.5j - Shear Buckling Strength for S690 steel with web thickness >50mm \leq 100mm. - 37 -

Item	Current version	Amendments
44. Table 8.5k ⁴⁴	Table 8.5k - Shear buckling strength q_w (N/mm ²) of a web (for $t \le 16$ mm) 11) Grade Q420 steel, web thickness ≤ 16 mm – design strength p_y = 380N/mm ²	Table 8.5k - Shear buckling strength q _w (N/mm²) of a web (for t ≤ 16mm) 11) Grade Q235 steel, web thickness ≤ 16mm – design strength p _r = 215N/mm²
	d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞	d/t Stiffener spacing ratio a/d
	55 228	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 ∞ 55 129
	80 228 228 228 228 228 229 211 202 195 190 187 184 179 176 170 85 228 228 228 228 221 212 203 193 186 181 177 174 169 166 159 90 228 228 228 224 214 204 195 185 177 171 167 169 166 159 90 228 228 228 224 214 204 195 185 177 171 167 164 159 157 150 96 228 228 228 228 228 228 228 185 151 148 143 100 228 228 227 213 200 189 179 167 159 154 150 148 143 141 135	No 129 127 125 123 122 119 118 115 90 129 129 129 129 129 129 127 125 123 122 119 118 115 90 129 129 129 129 129 128 124 123 121 115 114 111 95 129 129 129 129 127 122 119 115 114 111 116 114 111 95 129 129 129 127 122 119 117 115 111 110 106 <td< td=""></td<>
	105 228 228 221 208 193 181 171 159 152 147 143 141 138 134 129 110 228 228 216 200 188 174 163 152 145 140 137 134 130 128 123 115 228 228 210 194 179 166 156 145 131 128 125 122 118 120 228 223 204 187 172 159 149 139 133 128 125 122 118 120 228 232 204 187 172 159 149 139 133 128 125 123 119 117 113 125 228 218 198 181 165 153 143 127 123 120 118 115 113 108	105 129 129 129 129 129 120 125 120 115 111 109 106 105 102 101 97 110 129 129 129 127 122 117 111 107 105 102 101 97 116 129 129 129 124 118 113 108 104 101 98 96 92 120 129 129 129 124 118 113 108 104 101 98 96 92 88 85 85 81 85 85 81 86 85 81 85 81 86 85 81 85 81 85 81 85 81 85 81 85 81 85 81 85 81 85 81 85 81 85 81 85 85 81 85 85 <t< td=""></t<>
	130 228 213 193 174 158 147 138 128 122 118 116 113 110 108 104 135 228 208 187 168 153 141 133 124 118 114 111 109 106 104 100 140 228 203 181 162 147 136 128 119 114 110 107 105 102 109 146 224 198 176 156 142 132 123 115 110 108 104 100 97 93 150 220 194 170 151 137 127 119 111 108 103 100 98 95 94 90	130 129 129 122 115 109 103 97 92 89 87 85 83 81 78 135 129 127 119 112 105 100 93 89 86 84 82 80 78 75 140 129 129 125 116 109 90 93 86 82 80 78 75 73 145 129 129 122 114 106 99 93 86 82 80 78 74 73 70 150 129 120 111 103 96 90 84 80 77 75 74 72 70 88
	155 215 189 164 146 133 123 115 108 103 99 97 95 92 91 87 160 211 184 159 141 129 119 112 104 99 96 94 92 89 88 84 165 207 179 154 137 125 116 108 101 96 93 91 89 87 85 82 170 203 174 150 133 121 112 106 98 93 90 88 84 83 79 175 199 169 145 129 118 109 102 95 91 88 84 82 80 77	155 129 128 117 108 100 92 87 81 77 74 73 71 69 68 65 160 129 128 115 105 97 90 84 78 75 72 70 69 67 66 63 165 129 124 113 03 94 87 81 76 72 70 68 67 65 64 61 170 129 122 110 100 91 84 79 74 70 68 65 63 62 60 175 129 122 110 100 91 84 79 74 70 68 66 64 63 61 60 58 175 129 120 108 97 88 82 77 72 68 66 64 61 60 58 <
	180 195 164 141 128 114 108 99 93 88 85 83 82 79 78 75 185 191 160 137 122 111 103 97 90 88 83 81 80 77 76 73 190 187 155 134 119 108 100 94 88 84 81 79 77 75 74 71 195 183 151 130 116 105 98 92 85 81 79 77 75 74 71 195 183 151 130 116 105 98 92 85 81 79 77 75 74 71 70 67 200 179 148 127 113 103 95 89 83 79 77 75 74 71 70	180 129 117 105 04 88 80 75 70 66 64 63 61 80 59 56 185 129 115 103 92 84 77 73 68 64 62 61 60 58 57 55 190 127 113 100 89 81 77 71 68 64 62 61 60 58 56 53 195 128 111 98 87 79 73 69 64 61 59 58 56 55 54 52 200 124 109 98 85 77 72 67 63 60 58 55 54 53 51
	205 175 144 124 110 100 93 87 81 77 75 73 72 70 68 66 210 171 141 121 108 98 91 85 79 76 73 71 70 68 67 64 215 167 137 118 105 96 89 83 77 74 71 70 68 66 63 62 220 163 134 116 103 93 87 81 76 72 70 68 66 63 62 64 61 225 159 131 113 100 93 87 81 76 72 70 68 67 65 64 61 225 159 131 113 100 91 85 79 74 71 68 67 65 63 62 60	205 122 107 93 83 75 70 65 61 58 56 55 54 52 51 49 210 120 105 91 81 74 68 64 60 57 55 54 53 51 50 48 216 110 103 89 77 86 62 58 55 54 52 51 50 48 215 119 103 89 77 70 65 61 57 54 52 51 50 49 47 220 117 101 87 77 70 65 61 57 54 52 51 50 49 48 46 225 115 99 85 75 69 64 60 56 53 51 50 49 48 47
	230 156 128 110 98 89 83 78 72 69 67 65 64 62 61 59 235 152 126 108 96 87 81 76 71 67 65 64 63 61 60 57 240 149 123 106 94 86 79 74 69 68 64 63 61 60 57 240 149 123 106 94 86 79 74 69 68 64 62 61 59 58 56 245 146 120 104 92 84 78 73 68 65 63 61 60 58 57 55 250 143 118 102 90 82 76 71 67 63 61 60 59 57 56 54 <td>230 113 97 83 74 67 62 58 54 52 50 49 48 47 46 45 235 112 94 81 72 66 61 57 53 51 49 48 47 46 45 43 240 10 92 79 71 64 60 56 52 50 48 47 46 45 43 240 10 92 79 71 64 60 56 52 50 48 47 46 45 44 245 108 90 78 69 63 55 51 49 47 46 45 44 43 41 250 107 89 76 68 62 57 54 50 48 45 44 43 42 40</td>	230 113 97 83 74 67 62 58 54 52 50 49 48 47 46 45 235 112 94 81 72 66 61 57 53 51 49 48 47 46 45 43 240 10 92 79 71 64 60 56 52 50 48 47 46 45 43 240 10 92 79 71 64 60 56 52 50 48 47 46 45 44 245 108 90 78 69 63 55 51 49 47 46 45 44 43 41 250 107 89 76 68 62 57 54 50 48 45 44 43 42 40
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁴⁴ Revision of Table 8.5k - Shear Buckling Strength for Q235 steel with web thickness ≤ 16 mm.

Item	Current version Amendments	
45. Table 8.5145	Table 8.51 - Shear buckling strength q_w (N/mm²) of a web (for 16mm $\le t \le 35$ mm) Table 8.51 - Shear buckling strength q_w (N/mm²) of a web (for 16mm $\le t \le 35$ mm) 12) Grade Q420 steel, web thickness >16mm ≤ 35 mm – design strength $p_x = 360$ N/mm² Table 8.51 - Shear buckling strength q_w (N/mm²) of a web (for 16mm $\le t \le 35$ mm)	-
	d/t Stiffener spacing ratio a/d	$h p_y = 205 \text{N/mm}^2$
	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 216 214 1.6 1.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	2.0 2.5 3.0 ∞
	60 216 211 205 201 198 198 192 190 185 65 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123	123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123
	85 216 217 120 129 123	121 120 118 116 118 116 114 112 114 112 110 107 110 108 106 103 106 104 102 99
	105 216 216 213 199 187 176 166 155 148 143 139 137 133 131 125 105 123 <td>102 100 98 95 98 96 94 90 94 91 90 86 90 83 86 83 87 84 83 79</td>	102 100 98 95 98 96 94 90 94 91 90 86 90 83 86 83 87 84 83 79
		83 81 79 76 80 78 76 73 77 75 74 71 75 72 71 68 72 70 69 66
	160 204 178 155 138 125 116 109 101 97 94 91 90 87 88 82 165 123 121 111 102 94 87 82 76 73 70 89 165 126 123 121 111 102 94 87 82 76 73 70 89 165 123 119 109 100 92 85 80 74 71 68 67	70 68 67 64 67 68 64 62 65 64 62 60 63 62 61 58 62 60 59 57
	180 189 160 138 122 111 103 97 90 86 83 81 80 77 76 73 180 123 114 102 92 84 78 73 88 65 63 61 59 185 185 155 134 119 108 100 94 88 84 81 79 77 75 74 71 185 123 112 100 90 82 76 71 66 63 61 59 190 181 151 130 116 105 98 92 85 81 79 77 75 73 72 69 190 123 110 98 87 79 77 75 73 71 70 67 190 123 110 98 87 77 74 69 58 67 110 98 87	60 58 57 55 58 57 58 53 57 55 54 52 55 54 53 51 54 52 51 49
	210 166 137 118 105 95 88 83 77 74 71 69 68 66 65 62 210 116 102 89 79 72 66 62 58 55 54 52 215 163 134 115 102 93 86 81 75 72 69 68 67 65 64 61 215 115 100 87 77 70 68 61 57 54 52 51 22 01 150 150 157 77 70 68 63 60 55 53 51 50	53 51 50 48 51 50 49 47 50 49 48 46 49 48 47 45 48 48 48 44
	230 152 125 108 96 87 81 76 70 67 65 63 62 60 59 57 230 110 94 81 72 65 61 57 53 51 49 48 47 235 148 122 105 94 85 79 74 69 66 64 62 61 59 58 56 235 108 92 79 70 64 59 56 52 49 48 47 240 145 120 103 92 83 77 72 67 64 62 61 58 57 55 240 107 90 78 51 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 45 44 45 44 45 44 45 44 45 44 45 44 45 <	47 45 45 43 48 44 44 42 45 44 43 41 44 43 42 40 43 42 41 39
	Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3. Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	

 $^{^{45}}$ Revision of Table 8.51 - Shear Buckling Strength for Q235 steel with web thickness >16mm \leq 40mm. - 39 -

Item	Current version							A	me	ndı	men	nts						
46. Table 8.5m ⁴⁶				1	able	<mark>8.5m</mark> -	Shea	ir bucl	kling s	treng	th q _w (N/mm ²	²) of a	web (f	for t ≤′	16mm		
				13)	Grad	e Q345	Q355	steel,	web th	icknes	s ≤16r	nm – d	esign s	trengti	$h p_{y} = 3$	305N/m	m ²	
			d/t	04	0.5	0.6	0.7	0.8	0.9	Stiffe	ener sp 1.2	acing	ratio a/	d 4 0	120	25	30	
		5 6 7 7 7	15 10 15	183 183 183 183 183	183 183 183 183 183 183	183 183 183	183 183 183 183 179 172	183 183 183 177 170	183 183 182 175 168	183 183 179 172 165	183 183 178 170 163	183 182 174 166 159						
		8899	0 5 0	183 183 183	183 183 183 183 183	183 183 183 183 183	183 183 183 183 183 182	183 183 183 178 178	183 181 176 170 165	181 175 169 163 158	174 168 162 155 149		166 159 152 145 139	163 156 149 142 135	161 154 147 140 133	158 150 143 138 129	158 148 141 134 127	151 143 135 128 122
		1	20	183 183 183 183 183	183 183 183 183 183	183 183 180 176 172	177 173 168 163 159	168 163 158 153 147	159 154 148 143 137	152 148 140 134 129	143 137 131 125 120	137 130 124 119 115	132 128 120 115 111	129 123 117 113 108	126 121 115 111 108	123 117 112 107 103	121 115 110 106 101	116 111 108 101 97
		1	40 45	183	182 179 175 172 168	167 163 159 155 151	154 150 145 140 138	142 137 132 128 123	132 127 123 118 114	124 119 115 111 107	115 111 107 104 100	110 108 102 99 95	108 103 99 95 92	104 100 97 93 90	102 98 95 91 88	99 95 92 89 86	97 94 91 87 84	94 90 87 84 81
		1	65 70	178 175	165 161 157 154 150	147 143 139 135 131	131 127 123 120 116	119 116 112 109 106	111 107 104 101 98	104 101 98 95 92	97 94 91 88 86	92 89 87 84 82	89 87 84 81 79	87 84 82 79 77	86 83 80 78 76	83 81 78 76 74	82 79 77 75 72	79 78 74 72 70
		1	85 90 95	161	147 143 140 136 133	127 124 120 117 114	113 110 107 104 102	103 100 97 95 93	95 93 90 88 86	89 87 85 83 81	83 81 79 77 75	80 77 75 73 72	77 75 73 71 69	75 73 71 69 68	74 72 70 68 68	72 70 68 66 64	70 68 67 65 63	68 66 64 62 61
		2 2 2	20	146	129 126 123 121 118	112 109 108 104 102	99 97 95 92 90	90 88 86 84 82	84 82 80 78 76	79 77 75 73 72	73 71 70 68 67	70 68 67 65 64	68 66 64 63 62	66 64 63 61 60	65 63 62 60 59	63 61 60 59 57	62 60 59 58 56	59 58 57 55 54
		2 2 2 2 2 2	35	140 137 134 131 129	115 113 111 108 106	99 97 95 93 91	88 87 85 83 81	80 79 77 76 74	75 73 71 70 69	70 69 67 66 64	65 64 63 61 60	62 61 60 58 57	60 59 58 57 55	59 57 56 55 54	58 56 55 54 53	56 55 54 53 52	55 54 53 52 51	53 52 51 50 49
		Ne	ote : F	For oth	her ste	eel gra	des no	ot cove	ered in	Table	8.5, re	efer to .	Appen	dix 8.3	I			

⁴⁶ Addition of Table 8.5m - Shear Buckling Strength for Q345/Q355 steel with web thickness ≤ 16 mm.

Item	Current version	Amendments
47. Table 8.5n ⁴⁷		Table 8.5n - Shear buckling strength q_w (N/mm ²) of a web (for 16mm < t ≤ 40mm)
		14) Grade Q345/Q355 steel, web thickness >16mm \leq 40mm – design strength p_r = 295N/mm ²
		d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.8 2.0 2.5 3.0 ∞
		55 177
		80 177 177 177 177 177 176 170 165 162 158 154 152 148 85 177 177 177 177 177 177 176 177 164 159 158 154 152 148 90 177 177 177 177 171 164 159 158 151 147 145 141 90 177 177 177 177 171 168 153 151 144 141 138 133 95 177 177 177 174 160 152 147 140 137 134 131 128 100 177 177 177 177 169 161 146 140 133 131 124 131 128 124 145 145 140 133 131 124 145 140 133 1
		105 177 177 177 173 164 156 149 140 134 130 127 124 121 119 114 110 177 177 177 169 159 151 143 134 128 124 121 119 115 113 109 115 177 177 175 164 154 145 138 128 124 121 119 115 113 109 120 177 177 177 149 149 140 132 128 124 121 119 115 113 109 120 177 177 177 140 149 140 132 123 117 113 100 106 104 100 120 177 177 178 145 135 127 118 113 109 106 104 100 96
		130 177 177 164 151 140 130 122 114 108 105 102 100 97 98 92 135 177 174 160 147 135 125 117 109 104 101 98 97 94 92 89 140 177 174 168 142 130 120 113 105 101 98 97 94 92 89 140 177 174 168 152 138 105 101 97 95 93 91 88 88 145 177 168 152 138 109 102 97 94 92 90 87 88 83 150 177 164 148 121 112 108 98 91 89 87 84 83 80
		155 177 161 144 129 117 109 102 95 91 88 86 84 82 80 77 160 176 158 140 125 114 105 99 92 88 85 83 82 79 78 75 165 174 154 130 121 110 102 96 89 85 83 81 79 77 76 73 170 171 151 132 118 107 99 93 87 83 80 78 75 73 70 175 168 147 129 114 104 96 91 84 80 78 76 75 72 71 68
		180 185 144 125 111 101 94 88 82 78 78 74 72 70 69 67 185 163 141 122 108 98 91 86 80 78 74 72 71 68 67 65 190 160 137 118 105 96 89 83 78 74 72 71 68 67 65 190 160 137 118 105 96 89 83 78 74 72 71 68 67 65 190 167 134 115 103 93 87 81 76 72 70 68 67 65 64 61 200 154 131 112 100 91 84 79 74 70 68 66 65 63 62 60 63 <
		205 152 127 110 98 89 82 77 72 69 68 65 64 62 61 58 210 149 124 107 95 87 80 75 70 67 65 63 62 60 59 57 215 146 121 105 93 85 78 74 69 63 62 61 59 58 58 58 58 52 20 143 119 102 91 83 77 72 67 64 62 60 59 58 56 220 143 119 102 91 83 77 72 67 64 62 60 59 58 56 53 225 141 116 100 89 81 75 70 66 63 61 59 58 55 53
		230 138 113 98 87 79 73 69 64 61 59 58 57 55 54 52 235 135 111 96 85 77 72 67 63 60 58 57 56 54 52 245 132 109 94 83 76 70 68 62 59 57 55 54 53 51 240 132 109 94 83 76 70 68 62 59 57 55 54 53 52 50 245 129 107 92 82 74 69 65 60 57 58 54 53 52 50 245 129 107 92 82 74 69 65 60 57 58 54 53 52 51 49 49 49 49
		Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁴⁷ Addition of Table 8.5n - Shear Buckling Strength for Q345/Q355 steel with web thickness >16mm \leq 40mm.

Item	Current version	Amendments
48. Table 8.50 ⁴⁸		Table 8.5o - Shear buckling strength <i>q_w</i> (N/mm²) of a web (for <i>t</i> ≤16mm)
		15) Grade Q390 steel, web thickness \leq 16mm – design strength ρ_r = 345N/mm ²
		difference spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.8 2.0 2.5 3.0 ∞
		55 207
		80 207 207 207 207 207 205 198 190 184 180 176 174 170 168 162 85 207 207 207 207 207 208 198 191 182 176 172 168 165 161 159 153 90 207 207 207 207 200 192 184 175 168 163 165 161 159 154 144 142 136 144 142 136 144 142 136 144 142 136 128 147 144 141 137 135 129 100 207 207 207 199 188 178 170 160 155 151 144 142 133 129 148 149 144 141 137 135 129
		105 207 207 208 194 182 172 183 152 145 140 137 134 131 128 123 110 207 207 202 188 176 165 156 156 134 131 128 123 118 115 207 207 197 182 170 159 149 139 132 128 119 117 131 120 207 207 197 182 170 159 149 132 125 123 119 117 131 120 207 207 177 164 152 143 133 125 125 123 119 117 136 125 207 204 187 171 158 146 137 128 122 118 114 112 108 104 125 207 204 147 <t< td=""></t<>
		130 207 200 182 186 152 140 132 123 117 113 111 109 105 104 100 135 207 195 177 180 146 135 127 118 113 109 105 102 100 96 140 207 191 172 155 141 130 122 114 109 105 102 100 96 92 145 207 187 167 149 138 128 118 100 105 102 100 96 92 145 207 183 162 144 131 122 114 109 105 102 98 97 95 93 89 150 205 183 162 144 131 122 114 106 102 98 96 94 91 90 38
		155 201 178 157 140 127 118 111 103 98 95 93 91 88 87 84 160 198 174 152 135 123 114 107 100 95 92 90 88 86 84 81 165 104 170 147 131 119 111 104 97 92 89 83 82 78 170 191 165 143 127 116 107 101 94 96 87 83 82 78 170 191 165 143 127 116 107 101 87 84 82 81 79 76 175 187 161 139 124 113 104 98 91 87 84 82 81 78 77 74
		180 184 157 135 120 109 101 95 89 85 82 80 78 76 75 72 185 180 153 131 117 108 99 93 86 82 80 78 76 74 73 70 190 177 149 128 114 104 96 90 84 80 77 78 74 73 70 190 177 149 128 114 104 96 90 84 80 77 78 74 73 70 190 177 145 125 111 101 94 88 82 78 76 74 72 71 68 66 66 66 66 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
		205 166 138 119 106 96 89 84 78 74 72 70 69 67 66 63 210 183 134 116 103 94 87 82 76 73 70 68 67 65 64 62 215 156 131 113 101 92 85 80 74 71 68 67 65 64 62 215 156 131 113 90 83 74 71 68 67 66 64 63 60 220 156 128 111 98 90 83 78 71 68 67 66 64 63 60 220 156 128 111 98 90 83 78 71 68 65 64 62 61 59 225 152 125 <td< td=""></td<>
		230 149 123 106 94 88 79 74 69 66 64 62 61 60 59 56 235 148 120 103 92 84 78 73 68 65 63 61 60 59 56 240 143 118 101 90 82 76 71 67 63 61 60 59 56 54 245 140 115 99 88 80 74 70 65 62 60 59 58 53 53 54 53 54 55 53 54 55 53 54 55 53 54 55 53 54 52 50 55 53 55 53 55 53 54 52 54 52 54 52 54 52 54 52 54 52 54 52
		Note - For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

⁴⁸ Addition of Table 8.50 - Shear Buckling Strength for Q390 steel with web thickness ≤ 16 mm.

Item	Current version	Amendments
49. Table 8.5p ⁴⁹		Table 8.5p - Shear buckling strength q_w (N/mm ²) of a web (for 16mm < $t \le 40$ mm)
		16) Grade Q390 steel, web thickness >16mm \leq 40mm – design strength p_{γ} = 330N/mm ²
		d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞
		55 198
		80 198 198 198 198 198 192 184 179 175 172 109 168 183 158 85 198 198 198 198 192 185 177 171 167 164 161 157 155 149 90 198 198 198 198 194 160 170 164 159 153 149 147 141 95 198 198 198 198 180 172 163 157 152 148 145 141 139 133 100 198 198 198 183 174 166 156 149 144 141 138 134 132 127
		105 198 198 198 198 177 167 159 149 142 137 134 131 128 128 121 110 198 198 195 182 171 161 152 142 137 134 131 128 128 121 110 198 198 190 177 165 155 148 135 131 128 124 135 131 128 120 115 120 198 190 177 165 155 148 136 129 125 122 120 115 110 120 198 198 172 160 149 140 130 124 120 117 115 112 110 106 125 198 197 181 167 154 143 124 125 110 117 115 110 107 105
		130 198 193 177 162 148 137 129 120 115 111 108 103 101 97 135 198 189 172 156 143 132 124 116 110 107 104 102 99 98 94 140 198 185 167 151 138 127 120 112 106 103 100 99 98 94 140 198 185 167 151 138 127 120 112 103 100 99 98 94 90 145 181 163 146 133 123 116 103 90 97 95 92 91 87 150 198 177 158 141 128 119 112 104 99 96 94 92 89 88 84
		155 195 173 153 138 124 115 108 101 96 93 91 89 86 85 82 160 192 169 149 132 120 112 105 98 93 90 88 86 84 82 79 165 188 165 144 128 117 108 102 95 90 88 86 84 82 79 170 185 161 140 124 113 105 99 92 88 85 83 81 79 74 74 170 185 157 138 121 110 102 96 89 85 82 80 79 77 75 72
		180 179 153 132 118 107 99 93 87 83 80 78 77 74 73 70 185 175 149 129 114 104 96 91 84 80 78 76 75 72 71 68 190 172 145 125 111 101 94 88 82 78 76 74 73 71 69 67 195 169 142 122 108 99 91 84 80 78 76 72 71 68 200 168 138 119 108 96 89 84 78 74 72 71 69 68 65 200 168 138 119 108 98 89 84 78 74 72 70 69 67 66 63
		205 162 135 118 103 94 87 82 76 73 70 69 67 65 64 62 210 159 131 113 101 92 85 80 74 71 69 67 66 64 63 60 215 156 128 111 98 90 83 78 73 69 67 65 64 62 61 59 220 152 125 108 96 83 76 71 69 67 65 64 62 61 59 58 220 152 125 108 96 88 81 76 71 69 65 64 62 61 69 58 225 149 123 106 94 88 79 74 69 66 64 62 61 60 59 56
		230 146 120 103 92 84 78 73 68 65 63 61 60 58 57 55 235 143 117 101 90 82 76 71 68 63 61 60 58 57 56 54 240 140 115 99 88 80 74 70 65 62 60 59 58 56 53 235 245 137 113 97 86 79 73 68 64 61 59 58 56 55 54 52 250 134 110 95 85 77 71 67 62 60 58 56 55 54 52 250 134 110 95 85 77 71 67 62 60 58 56 55 54 51
		Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

⁴⁹ Addition of Table 8.5p - Shear Buckling Strength for Q390 steel with web thickness >16mm \leq 40mm.

Item	Current version	Amendments
50. Table 8.5q ⁵⁰		Table 8.5q - Shear buckling strength q_w (N/mm ²) of a web (for $t \leq 16$ mm)
		17) Grade Q420 steel, web thickness \leq 16mm – design strength p_{y} = 375N/mm ²
		d/t Stiffener spacing ratio a/d 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞
		55 225
		80 225 226 23 203 194 184 178 176 173 168 168 169 90 225 225 225 224 213 203 194 184 178 177 168 169 160 160 95 225 225 225 218 206 195 188 176 170 172 158 150 160 148 142 100 225 225 215 199 188 178 167 159 150
		105 225 225 220 205 192 180 170 159 151 146 143 140 138 134 129 110 225 225 214 199 185 173 162 151 144 140 136 134 128 123 115 225 226 208 192 178 166 155 145 138 133 130 128 121 120 225 226 208 192 178 168 155 145 138 133 130 128 122 117 120 225 221 203 188 171 158 149 139 132 128 123 123 130 124 122 117 120 225 217 197 180 164 152 143 133 127 120 118 114 112 108
		130 225 212 192 174 158 146 137 128 122 118 115 113 110 108 104 135 225 207 188 167 152 141 132 123 118 114 111 109 106 104 100 140 225 202 180 161 147 138 128 119 113 110 107 105 102 100 96 140 225 202 180 161 147 138 128 119 113 110 107 105 102 100 96 145 222 107 175 158 142 131 123 115 106 103 101 99 97 93 150 218 192 169 150 137 127 119 111 106 100 96 95 94<
		155 214 188 184 146 132 123 115 107 102 99 97 95 92 91 87 160 210 183 158 141 128 119 112 104 99 96 94 92 89 88 84 165 206 178 154 137 124 115 108 101 96 93 91 89 85 84 165 206 178 154 137 124 115 108 101 96 93 91 89 85 84 82 80 77 170 202 173 149 133 121 112 105 98 93 90 88 87 84 83 79 175 198 168 145 129 117 109 102 95 91 88 86 84
		180 194 164 141 125 114 106 99 92 88 85 83 82 79 78 75 185 190 159 137 122 111 103 97 90 88 83 81 80 77 76 73 190 188 155 133 119 108 100 94 88 84 81 80 77 76 73 190 188 155 133 119 108 100 94 88 84 81 80 77 75 74 71 190 188 155 133 119 108 90 94 88 84 81 80 77 75 74 71 72 69 200 178 147 127 113 103 95 89 83 79 77 75 74 71
		205 174 144 124 110 100 93 87 81 77 75 73 72 70 69 66 210 170 140 121 107 98 91 85 79 78 73 71 70 68 67 64 215 168 137 118 105 95 88 83 77 74 71 70 68 66 63 62 62 62 62 62 63 62 63 63 64 61 63 62 66 63 63 62 66 63 63 64 61 64 61 64 61 64 61 64 61 64 61 64 61 63 62 60 65 64 61 65 63 62 60 65 64 61 65 65 65 65 65
		230 155 128 110 98 89 83 78 72 69 67 65 64 62 61 59 235 152 125 108 96 87 81 76 71 68 65 64 63 61 60 57 240 149 123 106 94 86 79 74 69 66 64 62 61 60 57 240 149 123 106 94 86 79 74 69 66 64 62 61 60 59 56 245 146 120 103 92 84 78 73 86 56 63 61 60 58 57 55 250 143 118 100 92 87 76 71 67 63 61 60 59 54
		Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3,

⁵⁰ Addition of Table 8.5q - Shear Buckling Strength for Q420 steel with web thickness ≤ 16 mm.

Item	Current version	Amendments	
51. Table 8.5r ⁵¹		Table 8.5r - Shear buckling strength q_w (N/mm ²) of a web (for 16mm < $t \le 40$ mm)	
		18) Grade Q420 steel, web thickness >16mm \leq 40mm – design strength p_{γ} = 355N/mm ²	
		d/t Stiffener spacing ratio a/d 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.8 1.8 2.0 2.5 3.0 0	00
		55 213 213 213 213 213 213 213 213 213 213	213
		65 213 213 213 213 213 213 213 212 208 206 204 200 198 70 213 213 213 213 213 213 209 204 200 197 195 191 189	203 193 184 174
		85 213 213 213 211 202 195 186 179 174 171 168 164 161 90 213 213 213 205 195 187 178 171 168 164 161	164 155 146 138 131
		110 213 213 206 192 179 188 158 147 140 138 133 130 126 124 115 213 213 201 188 173 161 151 141 134 130 127 124 121 119	125 119 114 109 105
		140 213 195 175 157 143 132 124 116 110 107 104 102 99 98 145 213 190 170 151 138 128 120 112 107 103 101 99 96 94	101 97 94 91 88
		155 208 181 159 142 129 119 112 105 100 96 94 92 90 88 180 202 177 154 137 125 116 109 101 97 93 91 89 87 85 165 198 173 150 133 121 112 105 98 94 98 87 84 83 170 195 168 145 129 117 100 102 95 94 188 87 84 83 170 195 168 145 129 117 100 102 95 91 88 86 84 82 80 175 191 164 141 125 114 106 99 93 88 85 83 82 79 78	85 82 80 77 75
		190 180 151 130 115 105 97 91 85 81 79 77 75 73 72 195 176 147 127 113 102 95 89 83 79 77 75 73 71 70	73 71 69 67 66
		215 162 133 115 102 93 88 81 75 72 69 68 67 65 64 220 158 130 112 100 91 84 79 74 70 68 66 65 63 62	64 63 61 60 58
		230 151 124 107 95 87 80 78 70 87 85 63 82 80 59	57 58 55 54 53
		Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.	

⁵¹ Addition of Table 8.5r f- Shear Buckling Strength for Q420 steel with web thickness >16mm \leq 40mm.

Item	Current version	Amendments
52. Table 8.5s ⁵²		Table 8.5s - Shear buckling strength $q_{\rm sr}$ (N/mm ²) of a web (for $t \leq$ 16mm)
		19) Grade Q460 steel, web thickness ≤ 16mm – design strength ρ _ν = 410N/mm ² d/t
		0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞
		55 248
		80 248 248 248 248 242 232 223 213 205 200 195 192 187 184 178 85 248 248 246 246 234 224 214 203 195 189 185 181 178 187 186 90 248 246 248 239 228 221 208 195 189 185 181 178 186 165 163 167 168 163 167 168 163 167 168 163 167 168 163 167 168 163 167 168 163 167 168 163 167 168 163 167 168 163 167 168 163 167 156 162 157 158 149 147 141 100 248 248 241 225 211 198 167
		105 248 248 234 218 203 190 178 168 153 149 148 142 140 134 110 246 248 228 210 195 181 170 158 151 146 142 140 134 128 124 124 120 134 128 123 120 187 173 162 151 144 140 136 134 128 128 120 246 236 215 190 179 168 156 145 140 134 130 128 123 120 246 236 150 169 145 149 138 131 128 124 122 118 125 246 231 209 189 172 159 149 133 128 125 123 120 118 113
		130 248 225 202 182 165 153 144 134 128 123 120 118 115 113 109 135 246 220 196 175 159 147 138 129 123 119 116 114 111 109 105 140 241 214 190 168 153 142 133 124 119 115 112 110 107 105 101 140 241 214 190 168 153 142 133 124 119 115 112 100 107 105 101 145 237 209 183 183 148 137 129 120 114 111 108 103 101 97 150 232 203 177 157 143 133 124 116 111 107 103 100 <
		155 228 198 171 152 138 128 120 112 107 104 101 99 96 95 91 160 223 192 166 147 134 124 117 109 104 100 98 96 93 92 88 165 219 187 161 143 130 121 113 100 101 97 95 93 91 89 88 170 214 181 156 130 123 117 100 101 97 95 93 91 89 88 170 214 181 156 130 123 114 107 98 94 92 90 88 83 83 175 210 176 151 153 123 114 107 98 90 88 85 84 81
		180 205 171 147 131 119 110 104 97 92 89 87 85 83 82 78 185 201 166 143 127 116 107 101 94 90 87 85 83 81 79 76 190 198 102 140 124 113 105 98 92 87 84 82 81 79 77 74 195 192 158 138 121 110 102 96 80 85 82 80 79 77 74 195 192 158 138 121 110 102 96 80 85 82 80 79 77 74 200 187 154 133 118 107 99 93 87 83 80 78 77 77 71
		205 182 150 129 115 105 97 91 85 81 78 76 75 73 72 69 210 178 148 128 112 102 95 89 83 79 76 75 73 71 70 67 215 174 143 123 110 100 92 87 81 77 73 72 69 68 66 220 170 140 121 107 98 90 85 79 75 73 71 70 67 225 168 137 117 107 98 90 83 77 74 71 70 68 67 64 225 168 137 118 105 95 88 83 77 74 71 70 68 66 65 63
		230 162 134 115 103 93 86 81 76 72 70 88 67 65 64 61 235 159 131 113 100 91 85 79 74 71 68 67 65 64 63 60 240 156 128 110 98 89 83 78 73 69 67 65 64 62 61 59 245 152 128 108 96 88 81 76 71 68 64 63 61 69 245 152 128 108 96 88 81 76 71 68 64 63 61 60 58 250 149 123 108 94 88 80 75 70 68 64 63 62 60 59 56
		Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

⁵² Addition of Table 8.5s - Shear Buckling Strength for Q460 steel with web thickness ≤ 16 mm.

Item	Current version	Amendments
Item 53. Table 8.5t ⁵³	Current version	Table 8.5t - Shear buckling strength q _w (N/mm ²) of a web (for 16mm < t ≤ 40mm)

⁵³ Addition of Table 8.5t - Shear Buckling Strength for Q460 steel with web thickness >16mm \leq 40mm.

					its	men	end	١me	A					
Image: bit	m)	<u>t≤16mn</u>	eb (for	of a w	l/mm²)	n <i>q</i> w (N	rengti	ling st	buck	Shear	<mark>8.5u -</mark>	Table.		
No. 0.4 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 <th>m²</th> <th>= 520N/mn</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>) thick</th> <th>el, wel</th> <th>550 ste</th> <th>rade Q</th> <th>21) G</th> <th></th> <th></th>	m²	= 520N/mn) thick	el, wel	550 ste	rade Q	21) G		
1 1	5 3.0 ∞	2.0 2.5	1.8	1.6				0.9	0.8	0.7		0.5	0.4	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>89 286 279 73 270 262 57 253 244 40 237 227 24 221 212</th> <th>263 257 247 240</th> <th>297 282 266 251 236</th> <th>301 288 271 256 241</th> <th>307 292 278 263 249</th> <th>312 300 287 273 259</th> <th>312 312 299 286 273</th> <th>312</th> <th>312</th> <th>312 312</th> <th>312 312 312 312 312 312</th> <th>312 312</th> <th>312 312 312</th> <th>55 60 65 70 75</th>	89 286 279 73 270 262 57 253 244 40 237 227 24 221 212	263 257 247 240	297 282 266 251 236	301 288 271 256 241	307 292 278 263 249	312 300 287 273 259	312 312 299 286 273	312	312	312 312	312 312 312 312 312 312	312 312	312 312 312	55 60 65 70 75
130 290 283 230 200 180 172 180 151 144 139 130 122 121 141 145 144 139 130 122 121 141 145 144 145 124 141 145 144 145 125 125 121 141 145 144 145 125 122 121 141 145 144 145 125 125 122 121 141 145 144 145 125 122 121 111 110 155 144 145 1	10 207 199 98 195 187 37 184 177	217 210 204 198 192 187 182 177 173 168	224	226 213 201	234 220 208 197 187	245 231 218 208 198	260 247 234 221 210	273 260 248 238 224	287 276 264 253 242	303 293 283 272 262		312	312 312 312	
185 286 224 193 171 186 144 133 123 117 113 110 108 108 180 280 217 187 186 144 133 123 117 113 110 108 108 108 107 126 147 133 123 117 113 110 108 108 101 115 134 123 124 117 113 110 106 107 125 128 128 121 111 100 100 101 101 101 101 101 101 101 101 1	53 150 145 48 144 138	165 160 157 153 151 146 144 140 139 135	168 160 153 147 141	172 164 157 151 145	178 170 163 156 150	187 178 170 163 157	200 191 183 175 168	213 204 195 187 179	231 220 210 201 193	252 242 231 221 212	257	286	312 312	110
180 234 192 168 148 134 124 117 100 101 98 99 94 98 190 221 182 157 161 144 131 121 114 100 98 95 93 94 98 190 221 182 177 140 133 124 115 103 98 95 93 94 98 200 210 173 149 133 124 115 103 98 95 93 98 84 82 81 77 70 70 70 89 91 88 84 82 81 77 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	16 114 110	119 116	136 131 126 122 118	139 134 129 125 121	144 138 134 129 125	151 145 140 135 131	162 156 150 145 140	172 166 160 154 149	186 179 173 167 161	204 197 190 183 177	230 221 213 206 199	247 239	279	130 135 140 145 150
205 205 109 148 130 118 109 103 98 91 88 86 85 82 210 200 165 142 126 115 107 100 93 89 88 84 82 81 215 196 161 139 124 112 104 98 91 87 84 82 81 7 220 191 157 136 121 110 102 96 89 85 82 80 78 77 220 183 151 130 115 105 97 91 85 81 77 77 230 183 151 130 115 105 97 91 85 81 77 77 230 183 151 130 115 105 97 91 85 81 77 77	09 107 103 05 103 99 02 100 96 9 97 94 6 95 91	112 109 108 105 105 102 102 99 99 96	114 110 107 104 101	117 113 110 108 103	113	128 123 119 115 112	138 131 127 124 120	140	156 151 147 142 138	171 166 161 156 152	193 187 181 178 171	224 217 210 204 198	266 260 253 247 240	155 160 165 170 175
230 183 151 130 115 105 97 91 85 81 79 77 75 7 235 179 147 127 113 103 95 89 83 80 77 75 74 7	3 92 88 1 89 86 9 87 84 6 85 82 4 83 79	96 93 94 91 91 89 89 86 87 84	98 95 93 90 88	100 98 95 93 90	104 101 98 96 93	101	117 114 111 108 105	115	134 131 127 124 121	138	157	182 178	216	180 185 190 195 200
230 183 151 130 115 105 97 91 85 81 79 77 75 74 7 235 179 147 127 113 103 95 89 83 80 77 75 74 7 240 175 144 124 111 101 93 88 82 78 75 74 72 245 172 141 122 108 99 91 88 80 76 74 72 245 172 141 122 108 99 91 88 80 78 74 72 71 88 250 168 139 119 106 97 90 84 78 75 72 71 89	2 81 78 0 79 76 8 77 74 6 75 72 5 74 71	85 82 82 80 81 78 79 76 77 75	86 84 82 80 78	88 86 84 82 80	91 89 87 85 83	96 93 91 89 87	103 100 98 96 93	109 107 104 102 100	110	130 126 124 121 118	148 142 139 138 133	161	200	205 210 215 220 225
	3 72 69 2 70 68 0 69 66 9 68 65 7 66 64	75 73 74 72 72 70 71 69 69 67	77 75 74 72 71	79 77 75 74 72	81 80 78 76 75	85 83 82 80 78	91 89 88 86 84	97 95 93 91 90	103 101	113 111	130 127 124 122 119	147 144	179 175	230 235 240 245 250
Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3,			<mark>x 8.3.</mark>	vppendi	fer to A	8.5, rei	Table	red in '	it cove	des no	el gra	ther st	For o	Note :

⁵⁴ Addition of Table 8.5u - Shear Buckling Strength for Q550 steel with web thickness ≤ 16 mm.

Item	Current version							A	me	ndr	nen	ts						
55. Table 8.5v ⁵⁵				T	able (8.5v -	Shear	r buck	dina st	trenat	h <i>a⊮</i> (1	1/mm²)) of a v	veb (fo	or 16m	m < <i>t</i> :	<mark>≤ 40m</mark> i	m)
)mm – (
			d/t	0.4	0.5		0.7				ener sp	acing 1.4	ratio a/	d		25	2.0	
			55	200	300 300 300 300 300 300	300 300 300 300 300	300 300 300 300 300	300 300 300 300 290	300 300 300 289 277	300 300 290 278 266	300 292 279 266 253	298 284 271 257 243	293 279 265 250 238	289 275 260 245 231	2.0 288 271 258 242 227	281 266 251 235 220	278 263 247 232 216	272 255 239 223 208
			80 85 90 95 100	300 300 300 300 300	300 300 300 300 300	300 300 294 286 277	295 285 275 265 256	279 269 258 247 237	266 254 243 231 220	254 242 229 217 208	240 226 214 202 192	229 216 204 193 183	222 209 197 187 177	216 204 192 182 173	212 200 189 179 170	208 194 183 174 165	203 191 180 171 162	195 183 173 164 156
			115 120	300	294 288 279 271 264	269 260 251 243 234	246 238 227 217 208	226 216 206 198 190	209 200 191 183 176	196 187 179 172 165	183 175 167 160 154	175 167 159 153 147	169 161 154 148 142	165 157 150 144 138	162 154 148 142 138	157 150 143 137 132	155 147 141 135 130	148 142 136 130 125
			140 3 145 3	290 284 278 272 266	256 249 242 234 227	226 217 209 202 195	200 193 186 180 174	182 176 169 163 158	169 163 157 151 146	159 153 147 142 137	148 142 137 133 128	141 138 131 128 122	138 131 127 122 118	133 128 124 119 115	131 128 121 117 113	127 122 118 114 110	125 120 116 112 108	120 115 111 108 104
			155 160 165 170 175	260 254 248 242 235	219 212 206 200 194	189 183 177 172 167	168 163 158 153 149	153 148 144 139 135	142 137 133 129 125	133 129 125 121 118	124 120 117 113 110	118 115 111 108 105	114 111 107 104 101	112 108 105 102 99	110 106 103 100 97	106 103 100 97 94	105 101 98 95 93	101 97 94 92 89
			180 185 190 195 200	217 212	189 184 179 174 170	163 158 154 150 146	145 141 137 134 130	132 128 125 122 119		115 111 109 108 103	107 104 101 99 96	102 99 96 94 92	98 96 93 91 89	96 94 91 89 86	94 92 89 87 85	92 89 87 85 82	90 88 85 83 81	87 84 82 80 78
			205 210 215 220 225	192 187	168 162 158 154 151	143 139 138 133 130	127 124 121 118 116	116 113 110 108	107 105 102	101 98 96 94 92	94 92 89 87 85	89 87 85 83 81	86 84 82 81 79	84 82 80 79 77	83 81 79 77 75	80 79 77 75 73	79 77 75 74 72	78 74 73 71 69
			230	179 176 172	148 145 142 139 138	127 125 122 120 117	113 111 109 106 104	103 101 99 97 95	95 93 92 90 88	90 88 86 84 82	84 82 80 78 77	80 78 76 75 73	77 75 74 72 71	75 74 72 71 69	74 72 71 69 68	72 70 69 67 66	71 69 68 66 65	68 66 65 64 62
		N	lote : F	For oth	er ste	<mark>el gra</mark>	des no	ot cove	ered in	Table	8.5, re	efer to ,	Appen	dix 8.3	L			

⁵⁵ Addition of Table 8.5v - Shear Buckling Strength for Q550 steel with web thickness >16mm \leq 40mm.

Item	Current version	Amendments
56. Table 8.5w ⁵⁶		Table 8.5w - Shear buckling strength q_w (N/mm ²) of a web (for $t \le 16$ mm)
		23) Grade Q690 steel, web thickness ≤ 16mm – design strength p _y = 630N/mm ² d/t Stiffener spacing ratio a/d
		0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 ∞ 55 378 369
		80 378 378 371 347 326 306 290 270 257 249 243 238 231 228 219 85 378 378 378 359 333 311 290 272 254 242 248 228 218 214 206 90 378 377 347 320 296 274 257 240 229 221 218 214 206 90 378 377 347 320 296 274 257 240 229 216 212 206 202 194 95 378 367 353 306 280 259 244 227 216 204 201 195 192 194 100 378 356 323 292 266 247 231 216 204 201 195 182 175
		105 378 348 311 279 253 235 220 206 198 189 185 182 176 173 167 110 378 335 298 298 242 224 210 198 187 181 177 173 168 168 159 120 379 325 288 254 231 214 201 198 173 169 168 159 120 359 314 274 244 222 205 193 180 171 166 162 159 154 152 148 120 359 314 274 244 222 205 193 180 171 166 162 159 154 152 148 125 350 304 263 234 213 197 185 175 155 153 148 140 140
		130 341 293 253 225 205 190 178 166 153 149 147 142 140 135 136 333 283 243 217 197 183 171 100 152 147 144 141 137 135 130 140 324 272 235 209 190 176 165 147 142 130 135 130 140 324 272 209 190 176 165 147 142 130 135 130 145 316 263 227 202 184 170 160 149 142 134 132 128 128 121 121 150 307 254 219 195 177 164 154 144 137 133 129 127 123 121 117
		155 298 246 212 189 172 159 149 139 133 128 125 123 119 117 113 160 290 238 205 183 166 154 145 135 129 124 121 119 116 114 109 165 281 231 199 177 161 149 140 131 125 118 116 112 110 106 170 272 224 193 172 157 145 138 127 117 113 125 114 112 100 107 103 175 265 218 188 167 152 141 132 123 118 114 111 109 106 104 100
		180 257 212 183 162 148 137 129 120 114 111 108 108 103 101 97 185 250 206 178 158 144 133 125 117 111 108 105 103 100 98 95 190 244 201 173 154 140 130 122 114 108 102 100 97 96 92 196 237 196 169 150 136 128 118 108 102 100 97 96 92 200 231 191 164 133 123 116 108 102 100 98 95 93 91 87
		205 228 188 160 143 130 120 113 105 100 97 95 93 90 89 85 210 220 182 157 139 127 117 110 103 98 95 92 91 88 87 83 215 215 177 153 136 124 115 108 100 96 93 90 89 86 85 81 202 210 173 149 133 121 112 105 98 90 89 86 85 81 202 210 173 149 133 121 112 105 98 90 89 86 85 81 225 206 169 146 130 118 110 103 96 91 88 85 82 81 78
		230 201 166 143 127 116 107 101 94 89 87 84 83 81 79 76 235 197 162 140 124 113 105 99 92 88 85 83 81 79 77 74 240 193 159 137 122 111 103 98 90 88 83 81 79 77 74 240 193 159 137 122 111 103 98 90 88 83 81 79 77 74 245 189 156 134 119 100 101 94 88 84 81 79 78 73 245 185 153 131 117 106 99 93 86 82 80 78 74 73 70
		Note : For other steel grades not covered in Table 8.5, refer to Appendix 8.3.

⁵⁶ Addition of Table 8.5w - Shear Buckling Strength for Q690 steel with web thickness ≤ 16 mm.

Item	Current version						I	Ame	end	mer	nts						
57. Table 8.5x ⁵⁷				Table	8.5x -	Shear	r buck	ling st	rength	1 <i>q_w</i> (N	l/mm²)	ofaw	veb (fo	or 16m	<mark>m < t≤</mark>	40mm	<mark>a)</mark>
				4) Grad	e Q690	steel, v	web thi	ckness	s >16m	<mark>m ≤40</mark>	mm – c	lesign :	streng	th p _r =	615N/m	ım² 💦	
		d	t 0.4	0.5	0.6	0.7	0.8	0.9	Stiffe 1.0	ner sp 1.2	acing r 1.4	ratio a/d 1.6	d 1.8	2.0	2.5	0.0	80
		55 60 65 70 75	369 369 369 369 369	369 369 369 369 369 369	369 369 369 369 369	369 369 369 368 355	369 369 364 350 335	369 365 349 334 318	369 353 336 319 303	356 338 320 302 284	346 328 309 290 271	339 320 301 281 262	334 314 294 274 256	330 310 290 269 251	323 303 282 261 244	320 298 277 257 240	310 288 266 247 231
		80 85 90 95 10	389	389 389 389 389 380 380 350	365 353 341 330 318	341 328 315 302 289	321 308 292 277 263	302 287 271 258 244	288 269 254 241 229	267 251 237 224 213	254 239 228 214 203	248 231 218 207 197	240 226 213 202 192	235 222 209 198 188	229 215 203 193 183	212 200 189	216 203 192 182 173
		10 11 11 12 12	5 369 0 369 5 361 0 353 5 344	340 330 320 310 300	308 294 283 271 260	275 263 251 241 231	250 239 229 219 210	232 221 212 203 195	218 208 199 191 183	203 194 185 178 171	194 185 177 169 163	187 179 171 164 157	183 174 167 160 153	179 171 164 157 151	174 166 159 152 146	171 164 158 150 144	165 157 150 144 138
		13 13 14 14 15	0 338 5 328 0 319 5 311 0 303	260	250 241 232 224 216	222 214 206 199 193	202 195 188 181 175	187 180 174 168 162	176 169 163 158 152	164 158 152 147 142	158 151 145 140 138	151 148 140 138 131	148 142 137 132 128	145 140 135 130 128	141 136 131 126 122	138 133 129 124 120	133 128 123 119 115
		15 16 16 17 17	5 294 0 286 5 278 0 269 5 261	243 235 228 222 215	209 203 197 191 186	188 181 175 170 165	170 164 159 155 150	157 152 148 143 139	148 143 139 135 131	138 133 129 125 122	131 127 123 120 116	127 123 119 116 112	124 120 116 113 110	122 118 114 111 108	118 114 111 108 105	116 112 109 106 103	112 108 105 102 99
		18 18 19 19 20	0 254 5 247 0 241 5 235 0 229	209 204 198 193 188	180 176 171 167 162	160 156 152 148 144	146 142 138 135 131	135 132 128 125 122	127 124 120 117 114	118 115 112 109 107	113 110 107 104 102	109 106 103 101 98	107 104 101 98 96	105 102 99 97 94	102 99 96 94 91	100 97 95 92 90	96 93 91 89 86
		20 21 21 22 22	5 213	175	151 148	141 138 134 131 128	128 125 122 120 117	119 116 113 111 108	112 109 106 104 102	104 102 99 97 95	99 97 95 92 90	96 94 91 89 87	94 91 89 87 85	92 90 88 86 84	89 87 85 83 81	88 86 84 82 80	84 82 80 79 77
		23 23 24 24 25	0 199 5 195 0 191 5 187 0 183	184 180 157 154 151	141 138 135 133 130	128 123 120 118 116	114 112 110 107 105	108 104 101 99 97	99 97 95 93 91	93 91 89 87 85	88 87 85 83 81	85 84 82 80 79	83 82 80 78 77	82 80 78 77 75	80 78 76 75 73	78 77 75 73 72	75 74 72 71 69
		Not	e : For	other s	teel gra	ades n	ot cove	ered in	Table	8.5, re	fer to /	Append	lix 8.3.				

⁵⁷ Addition of Table 8.5x - Shear Buckling Strength for Q690 steel with web thickness >16mm \leq 40mm.

Item	Current versi	on			Amendments
58. Table 8.7 ⁵⁸	Table 8.7 - Designation of buckling curves for different	rent section typ	es		Table 8.7 - Designation of buckling curves for different section types
	Type of section	Maximum thickness	buc	is of kling	Type of section Maximum Axis of buckling
	Hot-finished structural hollow sections with steel grade > S460 or hot-finished seamless structural hollow sections	(see note1)	x-x a ₀)	у-у а₀)	(see note1) x-x y-y Hot-finished structural hollow sections with steel grade≥ S460 or hot-finished seamless structural hollow sections a₀) a₀)
	Hot-finished structural hollow section ≤ grade S460		a)	a)	Hot-finished structural hollow section < grade S460 a) a)
	Cold-formed structural hollow section of longitudinal seam weld or spiral weld		c)	c)	Cold-formed structural hollow section of longitudinal c) c) c)
	Rolled I-section	≤ 40 mm > 40 mm	a) b)	b) c)	Solled I-section ≤ 40 mm a) b) > 40 mm b) c)
	Rolled H-section	≤ 40 mm ≤ 40 mm	b) c)	c) d)	Rolled H-section ≤ 40 mm b) c) > 40 mm c) d)
	Welded I- or H-section (see note 2)	≤ 40 mm ≤ 40 mm	b) b)	c) d)	Welded I- or H-section (see note 2) ≤ 40 mm b) c) > 40 mm b) d)
	Rolled I-section with welded flange cover plates with 0.25 < U/B < 0.80 as shown in Figure 8.4)	≤ 40 mm ≤ 40 mm	a) b)	b) c)	Rolled I-section with welded flange cover plates ≤ 40 mm a) b) with 0.25 < U/B < 0.80 as shown in Figure 8.4)
	Rolled H-section with welded flange cover plates with $0.25 < U/8 < 0.80$ as shown in Figure 8.4)	≤ 40 mm ≤ 40 mm	b) c)	c) d)	Rolled H-section with welded flange cover plates ≤ 40 mm b) c) with 0.25 < U/B < 0.80 as shown in Figure 8.4)
	Rolled I or H-section with welded flange cover plates with U/B \ge 0.80 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) c)	a) b)	Rolled I or H-section with welded flange cover plates ≤ 40 mm b) a) with U/B ≥ 0.80 as shown in Figure 8.4) > 40 mm c) b)
	Rolled I or H-section with welded flange cover plates with U/B ≤ 0.25 as shown in Figure 8.4)	≤ 40 mm > 40 mm	b) b)	c) d)	Rolled I or H-section with welded flange cover plates \leq 40 mm b) c) with U/B \leq 0.25 as shown in Figure 8.4) > 40 mm b) d)
	Welded box section (see note 3)	≤ 40 mm > 40 mm	b) c)	b) c)	Welded box section (see note 3) ≤ 40 mm b) b) b) > 40 mm c) c) c)
	Round, square or flat bar	≤ 40 mm > 40 mm	b) c)	b) c)	Round, square or flat bar ≤ 40 mm b) b) b) > 40 mm c) c) c)
	Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections	> 40 mm	, í	uxis: c)	Rolled angle, channel or T-section Two rolled sections laced, battened or back-to-back Compound rolled sections NOTE:
	 For thickness between 40mm and 50mm the value of p. may thicknesses up to 40mm and over 40mm for the relevant value For welded I or H-sections with their finanges thermally cut by m machining, for buckling about the y-y axis, strut curve b) may strut curve o) for finanges over 40mm thick. The category 'welded box section' includes any box section provided that all of the longitudinal welds are near the corn longitudinal stiffeners are NOT included in this category. Use of buckling curves based on other recognized design cor material factors and calibrated against Tables 8.8(a,), (a) to Table 8.8. 	of p _i . lachine without subsi be used for flanges n fabricated from pla ers of the cross-sec des allowing for varia	equent edge s up to 40m ates or rolle tion. Box se ation betwee	grinding or m thick and d sections, actions with an load and	 For thickness between 40mm and 50mm the value of p, may be taken as the average of the values for thicknesses up to 40mm and over 40mm for the relevant value of p,. For welded I or H-sections with their flanges thermally out by machine without subsequent edge grinding or machining, for buckling about the y-y axis, strut curve b) may be used for flanges up to 40mm thick and strut curve of for flanges over 40mm thick. The category 'welded box section' includes any box section fabricated from plates or rolled sections, provided that all of the longitudinal welds are near the corners of the cross-section. Box sections with longitudinal stiffeners are NOT included in this category. Use of buckling curves based on other recognized design codes allowing for variation between load and material factors and calibrated against Tables 8.8(a,), (a) to (h) is acceptable. See also footnote under Table 8.8.

⁵⁸ Revision of size of steel plate thickness in Table 8.7 for designation of buckling curve.

Item	Current version Amendments
Item 59. Table 8.8(b) ⁵⁹	<text><text></text></text>

⁵⁹ Addition of relevant steel grade $S275 \sim S460$ as subtitle of Table 8.8(b) for buckling curve b.

Item	Current version	Amendments
60. Table 8.8(b) (cont'd) ⁶⁰	Table 8.8(b) - Design strength ρ _c of compression members (cont'd) 4) Values of p _c in N/mm ⁴ with λ≥110 for strut curve b Steel grade and design strength p _r (N/mm ⁴) λ \$275 \$325< \$460	Table 8.8(b) - Design strength p _c of compression members (cont'd) i) S275 ~ S460 steel 4) Values of p _c in N/mm ² with λ≥110 for strut curve b
(cont'd) ⁶⁰	Steel grade and design strength p, (N/mm ²)	

 $^{^{60}\,}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(b) (Cont'd) for buckling curve b.

Item	Current version			Α	mendi	ments		
Table 8.8(b)			Table	8.8(b) - De	sign stre	ngth p _c of	compres	sion members
(cont'd) ⁶¹				i0 ~ S690 s				
				s of p _e in N/ Steel grade				
		<mark>٦</mark>	490	\$550 530	550	630	\$690 650	
		15	486	525 515	544	621	641	690 679
		20	477 487	504	534 522	609 595	628 613	665 650
		20 25 30 35	456 443	491 477	544 534 522 509 494	621 609 595 579 560	596 576	631 608
		40	428	460	476		551	580
		42 44	428 422 415	452 444	467 459	526 514	540 528	567 553
		42 44 48 48	408 400	460 452 444 436 427	449 440	537 526 514 502 489	551 540 528 514 500	580 587 553 538 522
				417	429	475	485	505
		52 54	383 373	407 396	418 406	460 445	470 454	488 470
		50 52 54 56 58	391 383 373 384 354	407 396 385 373	406 394 382	429 414	454 437 421	452 434
		62 64	333 323	349 337	357 344	382 367	388 372	398 381
		60 62 64 66 68	344 333 323 312 302	361 349 337 326 314	369 357 344 332 319	398 382 367 352 337	404 388 372 356 341	416 398 381 364 348
		70				323 310	327 313	
		70 72 74 76	292 281 271	302 291 280 270	307 295 284	310 297 285	313 300 287	333 319 305 292
		76 78	282 252	270 259	273 263	285 273	287 275	292 279
		80			252		264	
		80 82 84	234 226	240 231	243 234	251 241	253 243	257 248
		86 88	243 234 226 218 210	250 240 231 223 214	252 243 234 225 216	262 251 241 232 223	264 253 243 233 224	268 257 246 236 227
		90 92 94 96 98	202 195 188	208 199 192 185	208 201 193	214 208 199	216 207 200	218 209 201 194 187
		96 98	182 176	185 179	186 180	191 184	192 185	194 187
			170		174	178	179	
		100 102 104	164	172 167 161	168 162 157 151	171 165 160 154	172 166 160 155	180 174 168
		106 108	159 153 148	161 156 150	157 151	160 154	160 155	162 156
			E					
		Note :	For other st	eel grades	, reter to A	ppenaix a	5.4.	

⁶¹ Addition of design strength for S550 and S690 steel for buckling curve b.

Item	Current version				Amer	ndmen	ts	
52. Table 8.8(b) (cont'd) ⁶²			ii) S5	50 ~ S690 (steel (con	ťd)		sion members (cont'd
				es of p _e in Na Steel grade	/mm* with 2 and desig	A≥110 for n strength	strut curve p ₇ (N/mm ²)	b
		2	490	\$550 530	550	630	\$690 650	690
		110 112 114 116 118	0 144 2 139 4 135 6 131	146 141 138 132 128	146 142 137 133 129	149 144 140 135 131	150 145 140 138 132	151 148 141 137 132
		120 122 124 124 126 128	2 119 4 116 6 112	124 121 117 114 110	125 121 118 114 111	127 123 119 116 113	127 124 120 116 113	128 124 121 117 117
		130 136 140 140 145	5 99 0 93 5 87	107 100 93 87 82	108 100 94 88 82	109 102 95 89 83	110 102 95 89 83	110 103 96 89 84
		158 180 166 170 177	0 72 5 68 0 64	77 73 68 65 61	77 73 69 65 61	78 74 69 65 62	78 74 70 86 62	79 74 70 88 62
		180 185 190 195 200	0 58 5 55 0 52 5 49	58 55 52 50 47	58 55 52 50 47	59 56 53 50 48	59 56 53 50 48	59 56 53 51 48
		210 220 230 240 250	0 43 0 39 0 36	43 39 38 33 31	43 39 36 33 31	44 40 36 34 31	44 40 37 34 31	44 40 37 34 31
		280 270 280 290 300	0 23	28 26 25 23 22	29 26 25 23 22	29 27 25 23 22	29 27 25 23 22	29 27 25 23 22
		310 320 330 340 340	0 19 0 18	20 19 18 17 16	20 19 18 17 16	20 19 18 17 16	20 19 18 17 16	20 19 18 17 16
		350			16	16		16

⁶² Addition of design strength for S550 and S690 steel for buckling curve b.

Item	Current version	Amendments
Item 63. Table 8.8(c) ⁶³	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AmendmentsTable 8.8(c) - Design strength p_c of compression members• State strength p_c of compression members• System colspan="2">• System colspan="2" System
	60 176 183 189 195 201 225 230 236 241 247 270 274 284 289 296 62 173 179 185 191 197 220 225 230 236 241 247 270 274 284 289 296 64 170 176 182 188 193 215 220 225 230 236 241 247 270 274 284 289 289 64 170 176 182 188 193 215 220 225 230 235 255 260 288 272 280 68 167 173 178 184 189 210 215 220 224 229 248 252 260 264 271 68 164 169 175 180 185 205 210 214 21	60 176 183 189 195 201 225 230 236 241 247 270 274 284 289 298 62 173 179 185 191 197 220 225 230 236 241 262 267 276 280 289 286 64 170 176 182 188 193 215 220 225 230 236 241 267 276 280 289 280 64 170 176 182 188 193 215 220 225 230 235 255 260 288 272 280 68 167 173 178 184 189 210 215 220 224 224 248 252 286 264 271 68 164 169 175 180 185 205 210 214 219 22
	70 161 166 171 178 181 200 204 209 213 217 234 238 244 248 254 72 157 163 168 172 177 195 199 203 207 211 227 231 237 240 246 74 154 159 164 169 173 190 194 198 202 205 220 223 229 232 238 76 151 156 160 185 189 193 196 200 214 217 220 221 225 230 78 148 152 157 161 165 180 184 187 191 194 207 210 215 217 222	70 161 166 171 176 181 200 204 209 213 217 234 238 244 248 254 72 157 163 168 172 177 195 199 203 207 211 227 231 237 240 246 74 154 159 164 169 173 190 194 198 202 205 220 223 229 232 238 76 151 156 160 165 169 183 189 193 207 211 227 231 237 240 246 74 154 159 164 169 173 180 194 198 202 205 220 223 229 232 238 244 248 246 76 151 156 160 165 189 184 187 191 194
	80 145 149 153 157 181 176 179 182 185 188 201 203 208 210 215 82 142 146 150 154 157 171 174 177 180 183 195 197 201 203 207 84 139 142 146 150 154 167 171 174 177 180 183 195 197 201 203 207 84 139 142 146 150 154 167 169 172 175 178 189 191 195 197 201 86 135 139 143 146 150 168 170 173 183 185 189 190 194 88 132 136 139 143 146 158 160 163 165 168 170 179 18	80 145 149 153 157 161 176 179 182 185 188 201 203 208 210 215 82 142 146 150 154 157 171 174 177 180 183 195 197 201 203 207 84 139 142 146 150 154 167 169 172 175 178 189 191 195 197 201 84 139 142 146 150 154 167 169 172 175 178 189 191 195 197 201 86 135 139 143 146 150 162 165 168 170 173 183 184 187 88 132 136 139 143 146 158 160 163 165 168 177 179 183 18
	90 129 133 136 139 142 153 156 158 161 163 172 173 177 178 181 92 126 130 133 136 139 149 152 154 156 158 166 168 171 173 175 94 124 127 130 133 135 145 147 149 151 153 168 168 171 173 177 96 121 124 127 130 133 135 145 147 149 151 153 166 167 170 96 121 124 127 120 132 134 143 145 147 149 156 160 162 164 98 118 121 123 126 129 137 139 141 143 145 151 153 155 15	90 129 133 138 139 142 153 156 158 161 163 172 173 177 178 181 92 126 130 133 136 139 149 152 154 156 168 168 171 173 175 94 124 127 130 133 135 145 147 149 151 153 161 163 161 163 168 171 173 175 94 124 127 130 133 135 145 147 149 151 153 161 163 160 167 170 98 121 124 127 129 132 141 143 145 147 149 156 158 160 162 164 98 121 124 127 129 137 139 141 145 157 15
	100 115 118 120 123 125 134 135 137 139 140 147 148 151 152 154 102 113 115 118 120 122 130 132 133 135 138 143 144 146 147 149 104 110 112 115 117 119 126 128 130 131 133 138 139 142 142 144 106 107 110 112 114 118 123 125 126 127 129 134 135 137 138 140 108 107 110 112 114 118 123 126 126 127 129 134 135 137 138 140 108 105 107 109 111 113 120 121 123 124 125 130	100 115 118 120 123 125 134 135 137 139 140 147 148 151 152 154 102 113 115 118 120 122 130 132 133 135 136 143 144 146 147 149 104 110 112 115 117 119 126 128 130 131 133 138 139 142 142 144 106 107 110 112 114 116 123 125 126 127 129 134 135 137 138 140 108 105 107 109 111 113 120 121 123 124 125 130 131 133 134 136 108 105 107 109 111 113 120 121 123 124 125 130
	Note : For other steel grades, refer to Appendix 8.4.	Note : For other steel grades, refer to Appendix 8.4.

 $^{^{63}}$ Addition of relevant steel grade S275 ~ S460 as subtitle of Table 8.8(c) for buckling curve c.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
104 110 112 112 120 121 133 133 139 142 144 330 18 16 16 16 16 17 <th17< th=""> <th17< th=""> <th18< th=""></th18<></th17<></th17<>

 $^{^{64}\,}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(c) (Cont'd) for buckling curve c.

Item	Current version				Am	endme	ents	
Table 8.8(c) (cont'd) ⁶⁵				8.8(c) - De 0 ~ S690 s	-	ngth p _e of	compres	sion mem
` '			5) Values	of p _t in N/	mm ² with 7	< 110 for s	strut curve	C
		2		Steel grade S550	and desig	n strength	p _y (N/mm ⁴) S690	
			490	530	550	630	650	690
		15	484 470	522 508	541	617	636	673 652 629 603
		15 20 25 30 35	470	506 400	525 507 489 468	598 577 554 529	616 595 571	652
		30	455 439 421	490 472	489	554	571	603
		35	421	452	468	529	544	573
		40	402	431	445	500	513	539
		42	394	421	445 435 425	500 487 474	513 500 486	539 524 509
		44	385	412	425 414	474 461	486	509
		40 42 44 48 48	402 394 385 377 368	402 392	414 403	401	472 457	493 477
		50 52	359 349	381 370	392 380	432 418	442 427	460 443
		52 54 56 58	349 340 330 320	359	380 369 357 345	404	412	427
		56	330	359 348 337	357	404 389 375	412 396 381	410
		58	320	337	345	375	381	394
		60	310	326	334	361	367	378
		62	310 301 291	326 315 305	334 322 311	347	352	378 362 347
		64	291	305	311	333	338	347
		60 62 64 66 68	281 272	294 284	300 289	361 347 333 320 308	367 352 338 325 312	333 319
		70	263	273	2/8	295	299	203
		70 72 74 76	263 254 245 237	273 264 254 245	278 268 258 249	272	276	306 293 281
		76	237	245	249	295 284 272 262 252	299 287 276 265 254	270
		78	228	236	240			259
		80	221	228	231	242	244	248
		80 82 84	221 213 206	228 219 212	222	232	235	239
		84	199	212	231 222 214 207 199	242 232 224 215 207	244 235 228 217 209	248 239 229 220 212
		86 88	192	204 197	199	207	209	212
		00	185	100	102	200	201	
		90	185 179	190 184	192 186	200 192	201 194 187	204 197
		94	173	177	179	186	187	189
		90 92 94 96 98	187 182	171 166	173 167	179 173	180 174	183 176
		80						
		100	157	160	162 156	167	168	170
		102 104	152 147	155 150	158 151	161 156	162	164 158
		104	142	145	146	151	168 162 157 152	153
		400	100	141	142	148	147	148

⁶⁵ Addition of design strength for S550 and S690 steel for buckling curve c.

Item	Current version				Ame	ndmei	nts		
6. Table 8.8(c) (cont'd) ⁶⁶				: 8.8(c) - De 50 ~ S690 s			compress	ion members (cont'd	1)
(cont d)			5) Value	es of p₅ in N/	mm ² with 2	λ≥110 for s			
		λ		Steel grade S550		n strength	p _y (N/mm ²) S690		
		110 112 114 116 118	490 134 130 126 122 119	530 138 132 128 124 120	550 137 133 129 125 121	630 141 137 132 128 124	650 142 137 133 129 125	690 143 139 134 130 128	
		120 122 124 126 128	115 112 109 106 103	117 114 110 107 104	118 114 111 108 105	121 117 114 110 107	121 118 114 111 108	122 119 115 112 109	
		130 135 140 145 150	100 93 88 82 77	101 95 89 83 78	102 95 89 84 79	104 97 91 85 80	105 98 91 86 80	108 98 92 88 81	
		155 160 165 170 175	73 69 65 61 58	74 69 66 62 59	74 70 66 62 59	75 71 67 63 60	75 71 67 63 60	78 72 67 64 60	
		180 185 190 195 200	55 52 50 47 45	56 53 50 48 46	56 53 51 48 46	57 54 51 49 48	57 54 51 49 47	57 54 52 49 47	
		210 220 230 240 250	41 38 35 32 30	42 38 35 32 30	42 38 35 32 30	42 39 36 33 30	42 39 36 33 30	43 39 38 33 33	
		280 270 280 290 300	28 26 24 22 21	28 26 24 22 21	28 26 24 22 21	28 26 24 23 21	28 26 24 23 21	28 28 24 23 21	
		310 320 330 340 350	20 18 17 16 16	20 19 17 18 16	20 19 18 17 16	20 19 18 17 16	20 19 18 17 16	20 19 18 17 16	
		Note :	For other s	steel grades	, refer to A				

⁶⁶ Addition of design strength for S550 and S690 steel for buckling curve c.

Item Current version	Amendments
67. Table 8.8(d) ⁶⁷ T	strength p_c of compression members strength p_c (Mmm ²) strength p_c (Mm ²) strength p_c (M ²) strength p

 $^{^{67}}$ Addition of relevant steel grade S275 ~ S460 as subtitle of Table 8.8(d) for buckling curve d.

Item	Current version	Amendments
68. Table 8.8(d) (cont) ⁶⁸	Farst Start Star	

 $^{^{68}\,}$ Addition of relevant steel grade S275 \sim S460 as subtitle of Table 8.8(d) (Cont'd) for buckling curve d.

Item	Current version				Ame	ndmei	nts	
Table 8.8(d) (cont) ⁶⁹				8.8(d) - De 50 ~ S690 s		ngth p _e of	compres	sion membe
				s of p _c in N/ Steel grade				
		<mark>ہ</mark>	490	\$550 530	550	630	\$690 650	690
		15 20 25 30 35	481 461 440 419 397	518 498 474 450 428	537 514 490 488 440	611 584 557 527 496	629 602 573 542 509	666 637 606 572 538
		40 42 44 48 48	374 385 356 346 337	400 390 379 369 358	413 402 391 380 368	463 449 435 421 407	475 460 448 431 416	498 482 466 450 434
		50 52 54 56 58	327 317 308 298 289	347 338 328 315 305	357 345 334 323 312	393 379 366 352 339	402 387 373 359 346	418 403 387 372 357
		80 62 64 86 88	280 271 262 253 245	294 284 275 265 256	301 291 281 271 261	327 314 302 291 279	332 319 307 295 284	343 329 316 304 291
		70 72 74 76 78	237 229 221 214 206	247 238 230 222 214	252 243 234 226 218	269 258 249 239 230	273 262 252 242 233	280 269 258 248 238
		80 82 84 86 88	200 193 186 180 174	207 200 193 186 180	210 203 196 189 183	222 214 206 198 191	224 216 208 201 193	229 220 212 204 197
		90 92 94 98	169 163 158 153 148	174 168 163 157 152	178 170 165 159 154	185 178 172 166 161	188 180 174 168 162	190 183 177 170 165
		100 102 104 106 108	144 139 135 131 127	148 143 139 134 130	149 145 140 138 132	155 150 145 141 138	157 152 147 142 137	159 154 149 144 139

⁶⁹ Addition of design strength for S550 and S690 steel for buckling curve d.

Item	Current version				Ame	endme	ents		
70. Table 8.8(d)			Table	8.8(d) - De	sign strei	ngth p _c of	compres	sion members (cont'd))
$(\text{cont})^{70}$				0 ~ S690 s					
				of p _e in N/					
		λ		Steel grade S550			S690		
		110	490 123	530 128	550 128	630 132	650 133	690 135	
		112 114	120 116	128 123 119	128 124 120 117	132 128 124	129	131 127	
		116 118	113 110	116 112	117 113	121	133 129 125 121 118	123 119	
		120 122 124	107 104 101	109 106 103 100 98	110 107 104 101 99	114 110	114 111	116 112 109	
		126	101 98 96	103 100	104 101	110 107 104 101	111 108 105 102	108	
		128						103	
		130	93 87 82 77 73	95 89 84 78 74	96 90 84 79 74	99 92 86 81 76	99 93 87 81 77	100	
		135 140	82	84	84	86	87	88	
		145 150	77	78 74	79 74	81 76	81 77	94 88 82 77	
		155							
		155 160 165	65 61	66 82	66 63	68 64	68	69	
		170	69 65 61 58 55	70 66 62 59 56	70 66 63 59 56	72 68 64 61 57	72 68 64 61 58	73 69 65 61 58	
		175							
		180 185	52 50	53 51	53 51	54 52	55 52	55	
		190 195	52 50 48 45 43	53 51 48 46 44	53 51 48 46 44	54 52 49 47 45	55 52 49 47 45	55 52 50 47	
		200						45	
		210 220	40	40	40	41	41	41	
		230	30	37	37	37	38	35	
		240 250	40 36 33 31 29	40 37 34 31 29	40 37 34 31 29	41 37 34 32 29	41 38 34 32 29	41 38 35 32 30	
		260							
		270 280	25 23	25 23	25 23	25 24	25 24	28	
		290 300	27 25 23 22 20	27 25 23 22 20	27 25 23 22 20	27 25 24 22 21	27 25 24 22 21	27 28 24 22 21	
		310 320	19 18	19 18 17	19 18 17	19 18 17	19 18 17	20 18 17	
		330 340	17 18	17 16 15	17 16 15	17 16 15	16	16	
		350	15	15	15	15	15	15	
		Note :	For other st	eel grades	, refer to A	ppendix 8	.4.		

⁷⁰ Addition of design strength for S550 and S690 steel for buckling curve d.

Item	Current version	Amendments
71. Table 8.8(e) ⁷¹	Table 32(4) - Design strength (p_{-} of compression members) Values of p_{+} in Nimm? with $\lambda \ge 110$ for strut curve a Values of p_{+} in Nimm? with $\lambda \ge 110$ for strut curve a 1 <td< th=""><th></th></td<>	

 ⁷¹ Addition of design strength for Q355 and Q460 steel for buckling curve a; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve a.
 - 65 -

Item	Current version		Amendments								
			Table 8.8(e) - Design strength p₂ of compression members (con Values of p₂ in N/mm² with λ≥110 for strut curve a								
			Value		• with ∧ ≥ 110 fc and design stre	noth (N/mm²)					
		2	Q235	Q345/Q355	Q390	Q420	Q460				
		110	215 125	305 140	345 144	375 147	410 149				
		112	122	136 132	140	142	144				
		114 116	119 116	132 129	136 132	138 134	140 135				
		118	113	125	128	129	131				
		120	111	121	124	126	127				
		122	108	118	120	122	123				
		124 126	105 103	115 111	117 114	118 115	120 116				
		128	100	108	110	112	113				
		130	98	105	107	108	110				
		135 140	92 86	98 92	100 94	101 95	102				
		145	81	86	88	88	95 89				
		150	77	81	82	83	84				
		155	73	76	77	78	79				
		160 165	69 65	72 68	73 69	73 69	74 70				
		170	62	64	65	65	66				
		175	58	61	61	62	62				
		180	55	58	58	59	59				
		185 190	53 50	55 52	55 53	58 53	56 53				
		195	48	52 50	53 50	50	51				
		200	46	47	48	48	48				
		210	42	43	43	44	44				
		220 230	38 35	39 36	40 36	40 38	40 37				
		240	35 32	36 33	36 33	34	34				
		250	30	31	31	31	31				
		260	28	28	29	29	29				
		270 280	26 24	26 25	27 25	27 25	27				
		290	23	23 22	23 22	23 22	29 27 25 23 22				
		300	21	22		22					
		310	20	20	20	20	20				
		320 330	19 18	19 18	19 18	19 18	19 18				
		340	17	17	17	17	17				
		350	16	16	16	16	16				

Item	Current version	Amendments
Item 72. Table 8.8(f) ⁷²	Current version Table 3.6/the Design strength (Nimm?) N Steel prade and design strength	<section-header></section-header>
	Note : For other steel grades, refer to Appendix 8.4.	102 1121 1433 149 1533 157 1000 171 104 119 139 145 149 152 160 165 106 116 135 141 144 148 155 160 108 113 131 137 140 143 150 154 Note : For other steel grades, refer to Appendix 8.4. 54 54 54 54

 ⁷² Addition of design strength for Q355, Q460, Q550 and Q690 steel for buckling curve b; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve b.
 - 67 -

Item	Current version					Amen	dmer	nts			
					e 8.8(f) - De:	-				nbers (cor	<mark>(ť'd)</mark>
					Values of p₂ in Steel	grade and			ve b m²)		1
			λ	Q235	Q345/Q355	Q390	Q420	Q460	Q550	Q690	1
			110	215 111	305 128	345 133	375 138	410 139	520 145	630 149	1
			112 114	108 106	124 121	129 125	132 128	134 130	140 136	144 140	1
			116	103	117	122	124	128	132 128	135	1
			118	101	114	118	120	123	128	131	1
			120	99 96	111	115 112	117	119	124 120	127	1
			122 124	96 94	108 105	112 109	114 111	118 112	120 117	123 119	1
		1	126	92	103	106	107	109	113	116	1
			128	90	100	103	105	106	110	113	1
			130	88	97	100	102	103 97	107	109	1
			135 140	83 78	91 86	94 88	95 80	97	100	102	1
		1	145	78 74	81	83	89 84	90 85	93 87	95 89	1
			150	70	76	78	79	80	82	83	1
			155	66	72	73	74	75	77	78	1
			160 165	63 60	68 64	69 65	70 66	71 67	72 68	74 69	1
		1	170	57	61	62	62 59	63 60	65 61	65 62	1
			175	54	58	59	59	60	61	62	1
			180	51	55 52	56	56 53	57	58 55	59 56	1
			185 190	49 47	52 49	53 50	53 51	54 51	55	56	
			195	45	47	48	51 48	49	52 50	53 50	1
			200	43	45	46	46	46	47	48	1
			210	39 36 33 31	41 38 35 32	42 38 35 32	42 38 35 32	42 39 36 33	43 39 36 33	44 40 36 34	1
			220 230	30	38	38	38	39	39	36	1
			240 250	31 28	32 30	32 30	32 30	33 30	33	34	
									31	31	
			260	26	27	28	28 26 24	28 26 24	28	29	1
			270 280	23	28 24	26 24	20	20	25	25	1
			290 300	26 25 23 22 20	22 21	22 21	23 21	23 21	28 26 25 23 23	29 27 25 23 23	1
											1
			310 320	19 18	20 18	20 19	20 19	20 19	20 19	20 19	1
			330	17	17	17	18	18	18	18	1
			340 350	16 15	16 16	17 16	17 16	17 16	17 16	17 16	1
							10	10	10	19	
		No	ote : F	or other	steel grades	, refer to A	ppendix	8.4.			

Item	Current version	Amendments
73. Table 8.8(g) ⁷³	Table 8.8(g) - Design strength p_c of compression members Values of p_c in N/mm² with $\lambda < 110$ for strut curve c Values of p_c in N/mm² with $\lambda < 110$ for strut curve c Steel grade and design strength (N/mm²) Steel grade and design strength (N/mm²)	Table 8.8(g) - Design strength p_c of compression members Values of p_c in N/mm ² with $\lambda \le 110$ for struct curve c
	λ Q235 Q345 Q390 Q420 λ Q235 Q345 Q390 Q420 215 310 360 380 215 310 350 380	Steel grade and design strength (N/mm²) λ Q235 Q345/Q355 Q390 Q420 Q460 Q550 Q690
		215 305 345 376 410 520 630 15 215 305 345 374 408 512 617 20 214 299 336 364 396 409 568 25 208 290 326 353 384 481 577 30 202 281 315 305 329 357 445 529 40 100 262 293 316 343 424 500 42 187 256 276 300 324 330 406 474 46 182 250 270 300 324 317 386 447 50 177 241 268 288 310 375 432 52 174 237 263 282 303 365 418 54 172 224 282 270 298
	90 122 152 161 167 260 24 26 26 26 92 119 147 156 162 270 23 24 24 25 94 116 143 152 157 280 21 22 23 23 96 114 140 148 153 290 20 21 21 21 21 98 111 136 143 148 300 19 20 20 20 10 10 109 132 139 144 310 17 18 19 19 100 108 129 135 139 320 16 17 17 18 104 104 125 131 135 330 16 16 17	86 128 159 170 177 185 203 215 88 125 155 165 172 179 198 207 90 122 161 161 167 173 189 200 92 120 147 156 162 168 183 192 94 117 143 151 157 168 178 188 96 114 139 147 152 158 170 179 98 112 135 143 148 153 165 173
	108 102 122 128 131 340 15 15 16 16 108 99 118 124 128 350 14 14 15 15 Note : For other steel grades, refer to Appendix 8.4. 15 15 16 16	100 109 132 139 143 148 159 167 102 107 128 135 139 144 154 161 104 105 125 131 135 139 144 154 161 104 105 125 131 135 139 144 156 106 102 121 127 131 135 144 151 108 100 118 124 128 131 140 146

 ⁷³ Addition of design strength for Q355, Q460, Q550 and Q690 steel for buckling curve c; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve c.
 - 69 -

Item	Current version				Amer	ndmei	nts		
					-				nbers (cont'd)
					grade and	design stre	ength (N/mr	m²)	
		2.	Q235 215	Q345/Q355 305	Q390 345	Q420 375	Q460 410	Q550 520	Q690 630
		110 112 114 116 118	98 96 93 91	115 112 109 106 104	120 117 114 111 108	124 120 117 114 111	410 127 124 120 117 114	136 131 127 124 120	141 137 132 128 124
		120 122 124 126 128	84 82	101 98 96 93 91	105 102 100 97 95	108 105 102 99 97	110 107 104 102 99	117 113 110 107 104	121 117 114 110 107
		130 135 140 145 150	74 70 66	89 84 79 74 70	92 87 81 77 72	94 88 83 78 74	96 90 85 80 75	101 94 88 83 78	104 97 91 85 80
		155 180 186 170 175	57 54 52	66 63 60 57 54	68 65 61 58 55	69 66 62 59 56	71 67 63 60 57	73 69 65 62 59	75 71 67 63 60
		180 185 190 195 200	45 43 41	51 49 46 44 42	52 50 47 45 43	53 50 48 46 44	54 51 49 46 44	58 53 50 48 48	57 54 51 49 48
		210 220 230 240 250	33 31 29	39 36 33 30 28	40 36 33 31 29	40 37 34 31 29	40 37 34 31 29	42 38 35 32 30	42 39 36 33 30
		260 270 280 290 300	25 23 22 20 19	26 24 23 21 20	27 25 23 22 20	27 25 23 22 20	27 25 24 22 21	28 26 24 22 21	28 26 24 23 21
		310 320 330 340 350	17	19 18 17 16 15	19 18 17 16 15	19 18 17 16 15	19 18 17 16 15	20 19 17 16 16	20 19 18 17 16

Item	Current version	Amendments
Item 74. Table 8.8(h) ⁷⁴	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 8.8(h) - Design strength p_e of compression member Values of p_e in N/mm² with $\lambda < 110$ for strut curve d N Old 420 Q460 Q500 Q300 Q440 Q460 Q500 Q300 15 Q15 305 Q440 Q460 Q500 Q300 15 Q15 305 Q440 Q460 Q500 Q300 15 Q15 Q305 Q440 Q460 Q500 Q300 15 Q15 Q305 Q440 Q450 Q300 20 Q14 Q206 Q312 Q300 Q440 Q450 Q460 Q450 20 Q177 Q20 Q312 Q300 Q44 Q46 Q4
	78 123 159 171 180 200 35 39 40 41 80 120 154 166 174 210 33 36 37 37 82 117 150 162 169 220 30 33 34 34 84 115 146 157 164 230 28 30 31 32 86 112 142 153 159 240 28 29 29 88 110 139 148 155 250 24 26 27 27 90 107 135 144 150 260 23 24 25 25 92 105 131 140 146 270 21 23 23 23 23 23 24 25 25 25 25 25 25 20 20 20 20 20	74 129 166 180 190 200 228 249 78 128 162 175 184 194 220 239 78 123 157 170 179 188 212 230 80 121 153 165 174 182 205 222 82 118 149 161 169 177 198 214 84 115 145 156 164 171 191 206 88 110 138 148 154 161 179 188 198 88 110 138 148 154 161 179 191 90 108 134 144 150 156 173 185 92 105 131 139 145 152 167 178 94 103 127 136 141 147 162
	102 94 115 122 126 320 15 16 17 17 104 92 112 118 123 330 15 16 16 16 108 90 109 115 119 340 14 15 15 108 88 106 112 116 350 13 14 14 Note : For other steel grades, refer to Appendix 8.4.	100 96 117 125 129 134 147 155 102 94 114 121 126 131 142 150 104 92 111 118 122 127 138 145 106 90 109 115 119 123 134 141 108 88 106 112 116 120 130 136

 ⁷⁴ Addition of design strength for Q355, Q460, Q550 and Q690 steel for buckling curve d; Revision of design strength for Q235, Q345, Q390 and Q420 steel for buckling curve d.
 - 71 -

Item	Current version				Ame	ndmer	nts		
			I	Table 8.8(h) - De	sign stre	ngth p _e of	f compres	ssion mer	mbers (cont
				Values of p _c in	N/mm ² wit	th <mark>λ≥110</mark> f	or strut cur	ved	
			λ Q2	35 Q345/Q355	grade and Q390	design stre Q420	Q460	m²) Q550	Q690
			21	5 305	345	375	410	550	690
			10 80 12 84 14 83	6 103 4 101	109 106	113 110	116 113	126 122	132 128
		1	14 8	2 98	103	107	110	118	124
		1	16 8 18 7	1 96 9 93	101 98	104 101	107 104	115 112	121 117
		1.	20 7 22 7 24 7 26 7	7 91 6 89 4 87	95 93	98 96	101 99 96 94	109 106	114 110
1		1:	24 74 26 72	4 87 2 85	91 89	93 91	96	103 100	107 104
			28 7	2 80 1 83	89	89	94	97	104
						87			
			30 69 35 60	9 81 6 76	79	81	89 84	95 89	99 92
		1	40 60 45 50	2 72	75	77 72	79	83 78 74	86 81
			30 60 35 60 40 62 45 50	2 72 9 68 6 64	84 79 75 71 67	68	79 74 70	74	76
		-	55 5		63	65	66	69	72
		1	60 5 65 4	1 58	60 57	61 58	62 59	66 62	68 64
			65 40 70 41	9 55	57	58	59	62	64
			70 4 75 4	1 58 9 55 7 52 5 50	54 51	55 52	56 53	59 56	61 57
			80 43		40	50	51	53	54
		1	85 4	1 45	49 47	47	48	53 50	52
		1	90 30 95 31 90 30	9 43 7 41	44 42	45 43	46	48 46	49 47
			100 3	6 40	42	43	46 44 42	40	47
					37	38		40	41
			10 33 20 3 30 21 40 20	3 36 1 33 8 31 6 29	37 34 32 29 27	38 35 32 30	38 35 33 30	40 37 34 31	41 37
		2	30 20 40 20	8 31 6 29	32 29	32 30	33 30	34 31	34 32
			50 2	5 27	27	28	28	29	29
		2	80 2	3 25	25	26	26	27	27
		2	70 2	3 25 2 23 0 22 9 20 8 19	25 24 22 21 19	24 22	26 24 23 21 20	25 23 22 20	25 24
		2	80 20	9 20	22	22	23	23	24
		3	190 11 100 11	8 19	19	21 20	20	20	22 21
		3	10 1		18	18	19	19	19
		3	20 10 30 1	6 17 5 16	17 16	17 16	18 17	18 17	18 17
			40 1	4 15	15	16	17	16	16
		3	150 14		15	15	15	15	15

Item	Current version	Amendments
75. Clause 8.9.3 ⁷⁵		8.9.3 Member buckling resistance – (Alternative to 8.9.2)
		Members which are subjected to combined bending and axial compression should satisfy:
		$\frac{F_{c}}{A_{g}p_{cx}} + k_{xx}\frac{M_{x}}{M_{b}} + k_{xy}\frac{M_{y}}{M_{cy}} \le 1 $ (8.82a)
		$\frac{F_{c}}{A_{g}p_{cy}} + k_{yx}\frac{M_{x}}{M_{b}} + k_{yy}\frac{M_{y}}{M_{cy}} \le 1 $ (8.82b)
		where F_c , M_x and M_y are the design values of the compression force and the maximum moments about the major (x-x) axis and the
		minor (y-y) axis along the member, respectively
		M_b is the buckling resistance moment in clause 8.3.5.2
		M_{cy} is the moment capacity about the minor axis from clause 8.2.2 p_{cx} , p_{cy} are the axial strength under column buckling about the major
		(x-x) axis, and the minor (y-y) axis k_{xx} , k_{xy} , k_{yx} , k_{yy} are the interaction factors given in Table 8.10.
		Refer to Table 8.10 for members not susceptible to torsional
		deformations, or refer to Table 8.11 for members susceptible to torsional
		deformation

⁷⁵ Addition of Clause 8.9.3 for alternative method of member buckling resistance design.

Item	Current version			Amendments	
76. Table 8.10 ⁷⁶		Ta	ble 8.10 Interac	tion factors for combined axial	compression and bending
		Interaction factors	Type of sections	Design : Elastic cross-sectional properties Class 3, Effective cross-sectional properties Class 4	Plastic cross-sectional properties Class 1, Class 2
		k _{ax}	I-sections RHS		$\begin{split} & C_{mx}\left(1+\left(\bar{\lambda}_{x}-0.2\right)\frac{F_{c}}{P_{cx}}\right) \\ & \leq C_{mx}\left(1+0.8\frac{F_{c}}{P_{cx}}\right) \end{split}$
		k _{zy}	I-sections RHS	k _{yy}	0.6k ₇₉
		k _{yx}	I-sections RHS	0.8k _{xx}	0.6k _{xx}
			I-sections	$C_{my}\left(1+0.6\bar{\lambda}_y \frac{F_c}{P_{-}}\right)$	$\begin{split} & C_{my}\left(1+\left(2\tilde{\lambda}_y-0.6\right)\frac{F_c}{P_{cy}}\right) \\ & \leq C_{my}\left(1+1.4\frac{F_c}{P_{cy}}\right) \end{split}$
		k _{yy}	RHS	$\leq C_{my} \left(1 + 0.6 \frac{F_c}{P_{cy}} \right)$	$\begin{split} & C_{my} \left(1 + \left(2\tilde{\lambda}_y - 0.6\right) \frac{F_c}{P_{cy}}\right) \\ & \leq C_{my} \left(1 + 1.4 \frac{F_c}{P_{cy}}\right) \\ & \\ & \\ & \\ & C_{my} \left(1 + \left(\tilde{\lambda}_y - 0.2\right) \frac{F_c}{P_{cy}}\right) \\ & \leq C_{my} \left(1 + 0.8 \frac{F_c}{P_{cy}}\right) \end{split}$
			ections and rectang may be $k_{yx} = 0$.	ular hollow sections under axial comp	ression and uniaxial bending $\mathrm{M}_{\mathrm{x}^*}$ the
		Note: $ \bar{\lambda}_{x} = \frac{\lambda_{x}}{\pi \sqrt{\frac{E}{p_{y}}}} $ $ \bar{\lambda}_{y} = \frac{\lambda_{y}}{\pi \sqrt{\frac{E}{p_{y}}}} $			

⁷⁶ Addition of Table 8.10 for alternative method of member buckling resistance design.

Item	Current version		Amen	dments
77. Table 8.11 ⁷⁷		1	Table 8.11 Interaction factor deformations	s kij for members susceptible to torsional
				sign assumptions
		Interaction factors	Elastic cross-sectional properties Class 3, Effective cross-sectional properties Class 4	Plastic cross-sectional properties Class 1, Class 2
		k _{xx}	k _{yy} from Table 8.10)	k _{yy} from Table 8.10)
		k _{xy}	kyafrom Table 8.10)	k _{yn} from Table 8.10)
		k _{yx}		$\begin{bmatrix} 1 - \frac{0.1 \hat{\lambda}_y}{(C_{mLT} - 0.25)} \frac{F_c}{P_{cy}} \end{bmatrix}$ $\geq \begin{bmatrix} 1 - \frac{0.1}{(C_{mLT} - 0.25)} \frac{F_c}{P_{cy}} \end{bmatrix}$
				for $\hat{\lambda}_y < 0.4$: $k_{zy} = 0.6 + \hat{\lambda}_y \le 1 - \frac{0.1\hat{\lambda}_y}{(C_{mLT} - 0.25)} \frac{F_c}{P_{cy}}$
		k _{yy}	k _{yy} from Table 8.10	k _{yy} from Table 8.10

⁷⁷ Addition of Table 8.11 for alternative method of member buckling resistance design.

Item	Current version			Amend	lments	
78. Table 8.12 ⁷⁸		Table 8.	12 Equ Tabl	ivalent ui les 8.10 a	niform moment fa Ind 8.11	actors, C _m in
					C _{mx} and C _n	_{ny} and C _{mLT}
		Moment diagram	Rat	ıge	Uniform loading	Concentrated load
		M,	-1≤)	ψ≤1	0.6+0.4	4ψ ≥ 0.4
		M. N. ANK	0≤ a. _s ≤1	-1≤ψ≤1	$0.2 \pm 0.8 \alpha_s \ge 0.4$	0.2 + 0.8a _x ≥ 0.4
			$-1 \le \alpha_s \le 0$	0 ≤ ψ ≤ 1	$0.1-0.8\alpha_{_{\rm S}}\geq 0.4$	-0.8α _s ≥0.4
		$\alpha_h = M_g / M_h$		–1≦ ψ≦0	$0.1(1-\psi)-0.8\alpha_{_{\mathrm{N}}}\geq0.4$	$0.2(-\psi) - 0.8\alpha_{s} \ge 0.4$
		M. VM.	$0 \leq \alpha_h \leq 1$	-1≤ψ≤1	0.95 + 0.05α _h	0.90 + 0.10 α _h
		M	$-1 \le \alpha_n \le 0$	0≦ψ≦1	0.95 + 0.05α _h	0.90 + 0.10 a _h
		$\alpha_{\rm h} = M_{\rm h} / M_{\rm s}$	-120 _h 20	$-1 \le \psi \le 0$	$0.95 + 0.05 \alpha_{\rm h} \left(l + 2 \psi \right)$	$0.90 \pm 0.10\alpha_{\rm h}(1\pm 2\psi)$
		For members with should be taken 0			the equivalent unifo 0.9 respectively.	orm moment factor
		C _{mx} , C _{my} and C _n diagram between			ed according to the oints as follows:	bending moment
		moment factor Bend	ding axis	Points br direct		
		IIIX	x-x	у-у		
			у-у	Х-3		
		C _{mLT}	X-X	X-1	X	

⁷⁸ Addition of Table 8.12 for alternative method of member buckling resistance design.

Item	Current version	Amendments				
79. Page index ⁷⁹	8 DESIGN OF STRUCTURAL MEMBERS	8 DESIGN OF STRUCTURAL MEMBERS 75 8.1 GENERAL 75 8.2 RESTRAINED BEAMS 75 8.2.1 Shear capacity 75 8.2.2 Moment capacity 76 8.2.3 Beams with web openings 77 8.4 Casteliade beams 78 8.3 LATERAL-TORSIONAL BUCKLING OF BEAMS 79 8.3.1 Intermediate and end iateral restraints 79 8.3.2 Toraional restraint 800 8.3.3 Normal and destabilizing loads 800 8.3.4 Effective length for lateral-torsional buckling 80 8.4.1 DESIgn strength 81 8.4.1 Design strength 81 8.4.2 Minimum web thickness for serviceability 81 8.4.3 Effects of axiel force 82 8.4.4 Moment capacity of restrained girders 82 8.4.5 Effects of axiel force 82 8.4.6 Shear buckling resistance 82 8.4.7 Intermediate transverse web stiffeners and webs 84 8.4.10 Web capacit				

⁷⁹ Revision of page index of Section 8.

Item	Current version	Amendments
80. Table 9.2a ⁸⁰	Table 9.2a - Design strength of fillet welds p_w for BS-EN StandardsSteelElectrode classificationFor other types of electrode and/or steel grades: $p_w = 0.5U_e$ but $p_w \le 0.55 U_s$ where $S 275$ 220 $(220)^a$ $(220)^a$ $S 355$ $(220)^b$ 250 $(250)^a$ $S 460$ $(220)^b$ $(250)^b$ 280 U_s is the specified minimum tensile strength of the parent metal.a) Over-matching electrodes.b) Under-matching electrodes.	Table 9.2a - Design strength of fillet welds p_w for BS-EN and American Welding Society (AWS) StandardsSteelElectrode GradegradeAWS standardsFor other types of electrode and/or steel grades: $p_w = 0.5U_e$ but $p_w \le 0.55$ U_e whereS275220(220) ^a (220) ^a (220) ^a (220) ^a (220) ^a (220) ^a S355(220) ^b 250(250) ^a (250) ^a (250) ^a (250) ^a (250) ^a S460(220) ^b (250) ^a (280) ^a (280) ^a (280) ^a S690(220) ^a (250) ^a (280) ^a (320) ^a a)Over-matching electrodes.a)Under-matching electrodes.
81. Table 9.2b ⁸¹	Table 9.2b - Design strength of fillet welds p_w for GB or other StandardsSteel gradeElectrode classificationDesign strength N/mm²For other types of electrode and/or steel grades: $p_w = 0.38U_e$ $U_e \ge U_S$ Q235E43160Q345E50200Q390,Q420E55220Usis the specified minimum tensile strength of the parent metal.Note :- The ultimate strength of electrodes shall be greater than or equal to the tensile strength of the parent metal.	Table 9.2b - Design strength of fillet welds p_w for GB or other StandardsSteel gradeElectrode classificationDesign strength N/mm²For other types of electrode and/or steel grades: $p_w = 0.38U_e$ U_e $\geq U_S$ whereQ235E43160 U_e is the minimum tensile strength of the electrode specified in the relevant product standard; Q550E60225Q50E60225 U_s is the specified minimum tensile strength of the parent metal.Note :- The ultimate strength of electrodes shall be greater than or equal to the tensile strength of the parent metal.

 ⁸⁰ Addition of design strength of electrode for S550 and S690 steel and design strength of electrode complying AWS.
 ⁸¹ Addition of design strength of electrode for Q355, Q550 and Q690 steel.

Item	Current version	Amendments
82. Clause 9.3.4.4 ⁸²	where the effective net area coefficient K_e is given by $K_e = 1.2$ for steel of grade S275 = 1.1 for steel of grade S355 = 1.0 for steel of grade S460 $= (U_s/1.2)/p_y \leq 1.2$ for steel of other grades a_n is the net cross sectional area of the leg deduced for hole openings. a_g is the gross sectional area without reduction for openings.	where the effective net area coefficient K_e is given by $K_e = 1.2$ for steel of grade S275 = 1.1 for steel of grade S355 = 1.0 for steel of grade S460 = 0.84 for steel of grade S550 = 0.80 for steel of grade S690 a_n is the net cross sectional area of the leg deduced for hole openings. a_g is the gross sectional area without reduction for openings.
83. Table 9.5 ⁸³	Table 9.5 - Design shear strength of boltsBolt gradeDesign shear strength p_{ii} (N/mm²)ISO4.61608.837510.9400BSGeneral grade HSFG $M24$ μ gher grade HSFG400ASTMA307A325248A490311GB500178.825010.910.9310Other grades ($U_b \le 1000 \text{ N/mm²}$) $0.4U_b$ Note: U_b is the specified minimum tensile strength of the bolt.	Table 9.5 - Design shear strength of boltsBolt gradeDesign shear strength p_{*} (N/mm²)ISO4.61608.837510.940012.9480BSGeneral grade HSFG \leq M24400 \geq M27350Higher grade HSFG400ASTMA307124A325248A490311GB500178.825010.9310Other grades ($U_h \leq$ 1200 N/mm²)0.4 U_b Note: U_b is the specified minimum tensile strength of the bolt.

⁸² Addition of coefficient Ke for S550 and S690 steel.
⁸³ Addition of bolt grade ISO 6.8 and 12.9; Revision of shear strength of other bolt grade.

Item	Current version	Amendments
84. Table 9.6 ⁸⁴	Table 9.6 - Design bearing strength of boltsBolt gradeDesign bearing strength p_{bb} (N/mm²)ISO4.68.8100010.91300BSGeneral grade HSFG ≤ M24Higher grade HSFG1300ASTMA307A325450A490485GB500178.872010.90.7(U_b ≤ 100 N/mm²)0.7(U_b + Y_b)Note: U_b is the specified minimum tensile strength of the bolt. Y_b is the specified minimum yield strength of the bolt.	Table 9.6 - Design bearing strength of boltsBolt gradeDesign bearing strength p_{bb} (N/mm²)ISO4.64606.89008.8100010.9130012.91600BSGeneral grade HSFG ≤ M241000≥ M27900Higher grade HSFG1300ASTMA307A490485GB500178.872010.9930Other grades ($U_b \le 1000$ N/mm²)0.7($U_b + Y_b$)Note: U_b is the specified minimum tensile strength of the bolt. Y_b is the specified minimum yield strength of the bolt.
85. Clause 9.3.6.1.3 ⁸⁵	p_{os} is bearing strength of connected parts - for steel of grade S275, p_{os} = 460 MPa - for steel of grade S355, p_{os} = 550 MPa - for steel of grade S460, p_{os} = 670 MPa - for steel of other grades, p_{os} = 0.67(U_s + Y_s) (refer to section 3 for other grades of steel)	p_{os} is bearing strength of connected parts - for steel of grade S275, $p_{os} = 460$ MPa - for steel of grade S355, $p_{bs} = 550$ MPa - for steel of grade S460, $p_{bs} = 670$ MPa - for steel of grade S550, $p_{bs} = 770$ MPa - for steel of grade S690, $p_{bs} = 940$ MPa - for steel of other grades, $p_{bs} = 0.67(U_s + Y_s)$ (9.20) (refer to section 3 for other grades of steel)

⁸⁴ Addition of bolt grade ISO 6.8 and 12.9.
⁸⁵ Addition of bearing strength of connected parts for S550 and S690 steel.

Item	Current ver	rsion	Amendments				
86. Table 9.8 ⁸⁶	Table 9.8 - Design tension strength of bolts Bolt grade ISO 4.6 8.8 10.9 BS General grade HSFG ≤ M24 ≥ M27 Higher grade HSFG ASTM A307 A325 A490 GB50017 8.8 10.9 Other grades (U _b ≤ 1000 N/mm²) Note: U _b is the specified minimum tensile strength Y _b is the specified minimum yield strength of		Table 9.8 - Design tension strength of Bolt grade ISO 4.6 ISO 4.6 8.8 10.9 12.9 BS General grade HSFG Higher grade HSFG A307 A325 A490 GB50017 8.8 10.9 Other grades (Ub ≤ 1200 N/mm²) Note: Ub is the specified minimum tensi Yb is the specified minimum yield	Design tension strength ρ, (N/mm²) 240 480 560 700 810 ≤ M24 590 ≥ M27 515 700 310 620 780 400 500 0.7 U _b but ≤ Y _b le strength of the bolt.			

⁸⁶ Addition of bolt grade ISO 6.8 and 12.9; Revision of tension strength of other bolt grade.

Item	Current version	Amendments
87. Clause 11.7.3 ⁸⁷	11.7.3 Mechanical properties	11.7.3 Mechanical properties
	 11.7.3 Mechanical properties Cold forming is a process whereby the main forming of metal section is done at ambient temperature. It changes the material properties of steel and impairs ductility as well as toughness but enhances strength. These changes may also limit the ability to weld in cold deformed areas. The extent to which the properties are changed depends upon the type of steel, the forming temperature and the degree of deformation. The basic requirements on strength and ductility are given in clause 3.1.2. As a conservative design, no strength enhancement is allowed. To ensure sufficient notch toughness, the minimum average Charpy V-notch impact test energy at the required design temperature should be in accordance with clause 3.2. 	 11.7.3 Mechanical properties Cold forming is a process whereby the main forming of metal section is done at ambient temperature. It changes the material properties of steel and impairs ductility as well as toughness but enhances strength. The extent to which the properties are changed depends upon the type of steel, the forming temperature and the degree of deformation. Accounting for the changes in material properties, welding requirements as stipulated in clause 11.7.5 shall be followed. The basic requirements on strength and ductility are given in clause 3.1.2. As a conservative design, no strength enhancement in round corners due to cold-forming is allowed. To ensure sufficient notch toughness, the minimum average Charpy V-notch impact test energy at the required design temperature should be in
		accordance with clause 3.2.

⁸⁷ Deletion of limitation of welding in cold formed areas; Addition of welding requirement.

Item		Current version							Amendm	ents	
88. Table 11.7.5 ⁸⁸	11.7.5	Welding at cold	l-formed zon	es			11.7.5	Welding at	cold-formed	zones	
		Welding may be ca that one of the follow	rried out within a	a length 5t either	side of a cold-form	ned area, provided	Welding may	be carried	out in the corn	ers and the adj	acent cold-formed
		(a) the cold-fon (b) the interna Table 11.5;	med areas are n I radius-to-thick or	ormalized after c ness <i>r/t</i> ratio sa		fore welding; nt value given in sification (WPS) as	<mark>zones</mark> , provide				
			r clause 14.3.3.	i tullili the weldin	ig Procedure Spec	incation (WPS) as	(a) the inter	rnal radius-te	o-thickness r/t ra	atio satisfies the	relevant value giver
		Table 11.5 Cor Minimum internal	ditions for wel Strain due to cold	Max	d areas and adjad ximum thickness nerally	ent materials (mm) Fully killed	in Table 11	.5; or			
		radius/thickness (r/t) ratio ≥ 3.0	forming (%) ≤ 14		y Where fatigue		Table 11.5 Co	onditions for	welding cold-form	ied areas and adj	acent materials
		≥ 3.0 ≥ 2.0 ≥ 1.5	≤ 14 ≤ 20 ≤ 25	12	10	12	Minimum	Strain due	Maximum thickness (mm)		(mm)
		≥ 1.0	≤ 33	4	4	6	internal	to cold	Generally		Fully killed
				< ^{5t} >			radius/thicknes	forming		-	Aluminium-killed
					- -		Taulus/tilicklies	-	Predominantly	Where fatigue	Aluminium-kiiled
			^	- 6 r	î î t		s (r/t) ratio	(%)	static loading	predominates	steel (AL <u>></u> 0.02 %)
			5t Y	- 8			≥ 3.0	≤ 14	22	12	22
		NOTE: Cold-form	ed hollow sectio	AL	BS EN 10219 wh	ch do not satisfy	≥ 2.0	≤ 20	12	10	12
		the limits given in have a thickness K2H, MH, MLH, N	Table 11.5 can not exceeding 1	be assumed to a 2.5 mm and are	satisfy these limits Aluminium-killed w	if these sections ith a quality J2H,	≥ 1.5	≤ 25	8	8	10
		P ≤ 0.020% and S				ausiy C 20.10%,	≥ 1.0	≤ 3 3	4	4	6
		In other cases we can be shown by f									
							(b) the welding	g procedure	shall fulfill th	e Welding Proc	cedure Specification
							(WPS) as stipul	lated in clau	se 14.3.3.		_
							(·····) ······				
							Alternatively, v	velding may	be carried out	in the corners ar	nd the adjacent cold
							formed zones o	f those cold-	formed hollow	sections which a	re produced to those
							relevant materia	als specifica	tions of cold-for	med hollow sec	tions given in Annex
							A1.1.				

⁸⁸ Deletion of restriction of welding at cold formed zone.

Item	Current version	Amendments
89. Clause 12.1.3 ⁸⁹	Whenever fire protection materials are required to achieve the specified	Whenever fire protection materials are required to achieve the specified
	fire resistance period, the thicknesses of the fire protection materials	fire resistance period, the thicknesses of the fire protection materials
	should be derived from standard fire tests at accredited laboratories	should be derived from standard fire tests at accredited laboratories
	whilst the recommendations should be prepared by a suitably qualified	whilst the recommendations should be prepared by a suitably qualified
	person. Alternatively, current assessment methods include (a)	person. Alternatively, current assessment methods include (a) standard
	standard fire tests, (b) limiting temperature methods, (c) performance-	fire tests, (b) limiting temperature methods, (c) performance-based
	based design methods, and (d) simplified calculation methods.	design methods, and (d) simplified calculation methods.
		Connection plates, stiffeners and similar elements should be ordinarily
		treated with the same fire protection thickness as the primary steel
		member to which they are attached.

⁸⁹ Addition of fire protection requirement for connection plates.

Item	Current version	Amendments
90. Clause 14.3.6.4 ⁹⁰	14.3.6.4 Hold time before final NDT	14.3.6.4 Hold time before final NDT
	Owing to the risk of delayed cracking, a hold time period of at least 16	Owing to the risk of delayed cracking, a hold time period of at least 16
	hours should generally be allowed before the final inspection is made of	hours should generally be allowed before the final inspection is made of
	as-welded fabrications. This hold time should be reduced for thin	as-welded fabrications. This hold time should be reduced for thin
	materials whose yield strength is less than 500 $\ensuremath{N/mm^2}\xspace$ or should be	materials whose yield strength is less than 690 N/mm ² or should be
	increased for materials of combined thickness greater than 50 mm or of	increased for materials of combined thickness greater than 50 mm or of
	a yield strength over 500 N/mm ² . Typical hold times conforming with	a yield strength over 690 N/mm ² . Typical hold times conforming
	this requirement are illustrated in Table 14.2b. The hold time is the	with this requirement are illustrated in Table 14.2b. The hold time is the
	waiting time normally required after completion of welding. In high	waiting time normally required after completion of welding. In high
	restraint situations (e.g. cruciform welds), the hold time might need to	restraint situations (e.g. cruciform welds), the hold time might need to
	be increased; with evidence of continual satisfactory production, hold	be increased; with evidence of continual satisfactory production, hold
	times might be reduced. For material with a yield strength greater than	times might be reduced.
	500 N/mm ² hold time should be decided by a welding engineer and	For material with a yield strength greater than 690N/mm ² , the hold
	Table 14.2b should not be used.	time should be submitted by the Responsible Engineer based on the
		advice of a welding engineer or the supplier of the welding consumables,
		and Table 14.2b should not be used.
		and Lable 14.20 Should hot be used.

⁹⁰ Revision of yield strength of steel for hold time.

Item		Current version						Am	endments	5	
91. Table 14.2b ⁹¹	$\begin{array}{ c c c c c } \hline Nominal Carbon \\ Equivalent Value \\ (CEV)^{(2)} \hline t^{(3)} < 30mm \\ \hline \Sigma t^{(3)} \le 60mm \\ \hline \Sigma t^{(3)} \le 90mm \\ \hline \Sigma t^{(3)} \le 90mm \\ \hline \Sigma t^{(3)} \ge 90mm \\ \hline \Sigma t^{(3)} \le 90mm \\ \hline \Sigma t^{(3)} \ge 90mm \\ \hline \Sigma t^{(3)} \le 90mm \\ \hline \Sigma t^{(3)} \ge 90mm \\ \hline \Sigma t^{$				() Not (1) (2) (3)	Where the figures are consumables should b The Carbon equivaler formula and is calculat	$\Sigma t^{(3)} < 30 \text{ mm}$ None 8 hours 16 hours 16 hours 40 hours ⁽¹⁾ 48 hours ⁽¹⁾ 48 hours ⁽¹⁾ 48 hours ⁽¹⁾ in bold, generally, t e sought t value is that of the ed as follows: +M0+V 5 + $\frac{Ni + Cu}{5}$ ckness as shown in F $\Sigma t = t_1 + t_2$ Figure 14.1	e parent material to t igure 14.1.	the International Ins t_{1} t_{2} t_{3} t_{4} t_{1} t_{2} t_{4} t_{4} $z_{1} = t_{1} + t_{2} + t_{4}$ ickness	titute of welding (IIW) (T14.1) ⊣ ⊣ ⊣	
92. Annex A1.1.1 ⁹²	A1.1.1 Australian a. AS/NZS 1163: AS/NZS 1594: AS/NZS 3678: AS/NZS 3679. AS/NZS 3679.	2002 2011 1: 2010	Cold-formed stru Hot-rolled steel fl	at products Hot-rolled plates, Hot-rolled bars a	floorplates and slabs nd sections	A1.1.1	Australian ar AS/NZS 1163: AS/NZS 1594: AS/NZS 1595: AS/NZS 3678: AS/NZS 3679.1 AS/NZS 3679.2	2002 <mark>(R2016)</mark> 1998 (R2016) 2016 1: <mark>2016</mark>	Cold-formed stru Hot-rolled steel f Cold-rolled, unal	lat products loyed, steel shee Hot-rolled plates Hot-rolled bars (<mark>et and strip</mark> s, floorplates and slabs and sections

⁹¹ Revision of hold times for CEV > 0.48; Deletion of restriction of Class 1H steel for formula of CEV calculation. ⁹² Revision of updated standards.

93. Annex A1.1.2 ⁹³						
<i>95.</i> Alliex A1.1.2	A1.1.2	American standards		A1.1.2	American standards	
		ASTM A36/A36M-08	Standard Specification for Carbon Structural Steel		ASTM A36/A36M- <mark>19</mark>	Standard Specification for Carbon Structural Steel
		ASTM A500/A500M-10a	Standard Specification for Cold-Formed Welded and		ASTM A283/A283-18	Standard Specification for Low and Intermediate Tensile
			Seamless Carbon Steel Structural Tubing in Rounds and		ASTM A308-2010	Strength Carbon Steel Plates Standard Specification for Steel Sheet, Terne (Lead-Tin
			Shapes		ASTWI A300-2010	Alloy) Coated by the Hot-Dip Process
		ASTM A514/A514M-05(2009)	Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for		ASTM A423/A423M-19	Standard Specification for Seamless and Electric-Welded
ASTM A572/A572M-07 Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel						Low-Alloy Steel Tubes
			ASTM A500/A500M- <mark>21a</mark>	Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes		
		ASTM A618/A618M-04(2010)	Seamless High-Strength Low-Alloy Structural Tubing		ASTM A514/A514M- <mark>18e1</mark>	Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for
		ASTM A847/A847M-11	Standard Specification for Cold-Formed Welded and			Welding
			Seamless High Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance		ASTM A529/A529M-19	Standard Specification for High-Strength Carbon- Manganese Steel of Structural Quality
		ASTM A913/A913M-07	Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching		ASTM A572/A572M- <mark>21e1</mark>	Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel
			and Self-Tempering Process (QST)		ASTM A588/A588M-19	Standard Specification for High-Strength Low-Alloy
		ASTM A992/A992M-11	Standard Specification for Structural Steel Shapes			Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance
					ASTM A595/A595M-18	Standard Specification for Steel Tubes, Low-Carbon or High-Strength Low-Alloy, Tapered for Structural Use
					ASTM A618/A618M- <mark>21</mark>	Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing
					ASTM A653/A653M-20	Standard Specification for Steel Sheet, Zinc-Coated
						(Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
					ASTM A656/A656M-18	Standard Specification for Hot-Rolled Structural Steel, High-Strength Low-Alloy Plate with Improved Formability
					ASTM A709/A709M-21	Standard Specification for Structural Steel for Bridges

⁹³ Revision of updated standards.

Item	Current version		Amendments
		ASTM A847/A847M- <mark>21</mark>	Standard Specification for Cold-Formed Welded and Seamless High Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance
		ASTM A871/A871M-20	Standard Specification for High Strength Low-Alloy Structural Steel Plate with Atmospheric Corrosion Resistance
		ASTM A875/A875M-21	Standard Specification for Steel Sheet, Zinc-5 % Aluminum Alloy-Coated by the Hot-Dip Process
		ASTM A913/A913M- <mark>19</mark>	Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)
		ASTM A924/A924M-20	Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process
		ASTM A945-2006	Standard Specification for High-Strength Low-Alloy Structural Steel Plate with Low Carbon and Restricted Sulfur for Improved Weldability, Formability, and Toughness
		ASTM A973/A973M-20	Standard Specification for Structural Steel Shapes
		ASTM A992/A992M-20	Standard Specification for Structural Steel Shapes
		ASTM A1011/A1011M-18a	Standard Specification for Steel, Sheet and Strip, Hot- Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

Item	C	Current version			Amendments
94. Annex A1.1.3 ⁹⁴	A1.1.3 Chinese standards GB/T 247 - 1997 GB/T 700 - 2006 GB/T 709 - 2006 GB/T 1591 - 2008 GB/T 5313 - 1985 YB 4104 - 2000 GB 50017 - 2003 GB 50205 - 2001	Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel Carbon structural steel Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel High strength structural steel Through thickness properties of steel plates Steel plate for high rise building structure Code for design of steel structures Code for acceptance of construction quality of steel structures	A1.1.3	Chinese standards GB/T 247 - 2008 GB/T 700 - 2006 GB/T 709 - 2019 GB/T 1591 - 2018 GB/T 5313 - 2010 YB 4104 - 2000 GB/T 16270 - 2009 GB 50017 - 2017 GB 50205 - 2020	Rules of acceptance, package, label and certification for plate, strip and wide flat in structural steel Carbon structural steel Dimension, appearance, weight and tolerance of plate, strip and wide flat in hot rolled structural steel High strength low alloy structural steel Steel plates with through-thickness characteristics Steel plate for high rise building structure High strength structural steel plates in the quenched and tempered condition Code for design of steel structures Standard for acceptance of construction quality of steel structures
95. Annex A1.1.4 ⁹⁵	1.1.4 Japanese standards JIS G 3101: 2010 JIS G 3106: 2008 JIS G 3136: 2005 JIS G 3350: 2009 JIS G 3352: 2003 JIS G 3444: 2010 JIS G 3466: 2010 JIS A 5523:2006 JIS A 5528:2006	Rolled steels for general structure Rolled steels for welded structure Rolled steels for building structure Light gauge steels sections for general structure Steel decks Carbon steel tubes for general structure Carbon steel square rectangular tubes for general structure Weldable hot rolled steel sheet piles Hot rolled steel sheet piles	A1.1.4	Japanese standards JIS G 3101: 2020 JIS G 3106: 2020 JIS G 3136: 2012 JIS G 3350: 2021 JIS G 3352: 2014 JIS G 3444: 2021 JIS G 3466: 2021 JIS A 5523:2021 JIS A 5528:2021	Rolled steels for general structure Rolled steels for welded structure Rolled steels for building structure Light gauge steels sections for general structure Steel decks Carbon steel tubes for general structure Carbon steel square rectangular tubes for general structure Weldable hot rolled steel sheet piles Hot rolled steel sheet piles

⁹⁴ Revision of updated standards.
⁹⁵ Revision of updated standards.

UK and European stand BS EN 10025: 2004 BS EN 10164: 2004 BS EN 10210-1: 2006 BS EN 10248-1: 1996 BS EN 10147: 2000	Hot rolled products of non-alloy structural steels - Technical delivery conditions. Steel products with improved deformation properties perpendicular to the surface of the product - Technical delivery conditions. Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10025-1: 2019 BS EN 10025-2: 2019 BS EN 10025-3: 2019 BS EN 10025-4: 2019	Hot rolled products of non-alloy structural steels. Part 1: General technical delivery conditions Hot rolled products of non-alloy structural steels. Part 2: Technical delivery conditions for non-alloy structural steels Hot rolled products of non-alloy structural steels. Part 3: Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels
BS EN 10210-1: 2006 BS EN 10248-1: 1996	Steel products with improved deformation properties perpendicular to the surface of the product - Technical delivery conditions. Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10025-3: 2019	Technical delivery conditions for non-alloy structural steels Hot rolled products of non-alloy structural steels. Part 3: Technical delivery conditions for normalized/normalized
BS EN 10210-1: 2006 BS EN 10248-1: 1996	perpendicular to the surface of the product - Technical delivery conditions. Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions			steels Hot rolled products of non-alloy structural steels. Part 3: Technical delivery conditions for normalized/normalized
BS EN 10248-1: 1996	delivery conditions. Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions			Technical delivery conditions for normalized/normalized
BS EN 10248-1: 1996	fine grain structural steels. Part 1: Technical delivery requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10025-4: 2019	
	requirements. Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions		BS EN 10025-4: 2019	
	Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions			Hot rolled products of non-alloy structural steels. Part 4:
BS EN 10147: 2000	Technical delivery conditions			Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels
BS EN 10147: 2000			BS EN 10025-5: 2019	Hot rolled products of non-alloy structural steels. Part 5:
	Continuous hot dip zinc coated carbon steel sheet of structural quality			Technical delivery conditions for structural steels with improved atmospheric corrosion resistance
			BS EN 10025-6: 2019	Hot rolled products of non-alloy structural steels. Part 6:
			Technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition	
			BS EN 10164: <mark>2018</mark>	Steel products with improved deformation properties perpendicular to the surface of the product - Technical delivery conditions.
			BS EN 10210-1: 2006	Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery requirements.
			BS EN 10210-2: 2019	Hot finished steel structural hollow sections. Tolerances,
			BS EN 10210-3- 2020	dimensions and sectional properties. Hot finished steel structural hollow sections. Technical
			55 EN 10210-5. 2020	delivery conditions for high strength and weather resistant steels.
			BS EN 10248-1: 1996	Hot rolled sheet piling of non alloy steels. Part 1: Technical delivery conditions
			BS EN 10147: 2000	Continuous hot dip zinc coated carbon steel sheet of structural quality (withdrawn, and replaced by BS EN 10346:2015)
			BS EN 10149-1: 2013	Hot rolled flat products made of high strength steels for cold forming – Part 1: General technical delivery conditions
			BS EN 10149-2: 2013	Hot rolled flat products made of high strength steels for cold forming – Part 1: Technical delivery conditions for
				BS EN 10210-2: 2019 BS EN 10210-3: 2020 BS EN 10248-1: 1996 BS EN 10147: 2000 BS EN 10149-1: 2013

⁹⁶ Revision of updated standards.

Item	Current version		Amendments
		BS EN 10149-3: 2013	Hot rolled flat products made of high strength steels for cold forming – Part 1: Technical delivery conditions for normalized or normalized rolled steels
		BS EN 10348: 2015	Continuously hot-dip coated steel flat products for cold forming.
		BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Technical delivery requirements
		BS EN 10219-2: 2019	Cold formed welded steel structural hollow sections. Tolerances, dimensions and sectional properties
		BS EN 10219-3: 2020	Cold formed welded steel structural hollow sections. Technical delivery conditions for high strength and weather resistant steels

Item	Cu	rrent version		An	nendments
97. Annex A1.1.6 ⁹⁷	A1.1.6 Standards for destructive BS EN 10002-1: 2001 BS EN 10045-1: 1990 BS EN 10045-1: 1990 BS EN ISO 148-1: 2010 BS EN ISO 148-1: 2010 BS EN ISO 6892-1: 2009 ASTM E8/E8M-09 ASTM E8/E8M-09 ASTM E23-07ae1 ASTM A770/A770M-03 (R2001) JIS G 3199: 2009 AS/NZS 3678: 2011 GB 5313:2000-T	tests Tensile testing of metallic materials. Part 1: Method of test at ambient temperature. (Withdrawn in the UK, replaced by BS EN ISO 6892-1: 2009) Charpy impact test on metallic materials – Part 1: Test method (V- and U-notches) (Withdrawn in the UK, replaced by BS EN ISO 148-1: 2010) Metallic materials - Charpy Pendulum impact test. Part 1: Test method Metallic materials - Tensile testing. Part 1: Method of test at ambient temperature Standard Test Methods for Tension Testing of Metallic Materials Standard Test Methods for Notched Bar Impact Testing of Metallic Materials 7) Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications Specification for through-thickness characteristics of steel plate, wide flat and sections Specification for through-thickness characteristics of steel plate, wide flat and sections	A1.1.6	Standards for destructive i BS EN ISO 148-1: 2016 BS EN ISO 6892-1: 2019 ASTM E8/E8M-21 ASTM E23-18 ASTM A770/A770M-03 (R2007 JIS G 3199: 2021 AS/NZS 3678: 2016 GB 5313:2010	tests Metallic materials - Charpy Pendulum impact test. Part 1: Test method Metallic materials - Tensile testing. Part 1: Method of test at ambient temperature Standard Test Methods for Tension Testing of Metallic Materials Standard Test Methods for Notched Bar Impact Testing of Metallic Materials) Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications Specification for through-thickness characteristics of steel plate, wide flat and sections Structural steel – Hot-rolled plates, floorplates and slabs Steel plate with through-thickness characteristics

⁹⁷ Revision of updated standards.

Item	Current version	Amendments
98. Annex A1.2.2 ⁹⁸	A1.2.2 American standards ASTM A27/A27M-10 Standard Specification for Steel Casting General Application ASTM A148/A148M-08 Standard specification for steel castings for structural purposes ASTM A488/A488M -10 Standard Practice for Steel Casting Qualifications of Procedures and Personn ASTM A781/A781M -11 Standard Specification for Castings, Si Common Requirements, for General Indust ASTM A957/A957M -11 Standard Specification for Investment of and Alloy, Common Requirements, for General Indust	high strength, ASTM A148/A148M-20e1 Standard specification General Application high strength, ASTM A148/A148M-20e1 Standard specification for steel castings, high strength, for structural purposes high ad ASTM A488/A488M -18e2 Standard Practice for Steel Castings, Welding Qualifications of Procedures and Personnel high ad ASTM A781/A781M -21 Standard Specification for Castings, Steel and Alloy, Common Requirements, for General Industrial Use
99. Annex A1.2.3 ⁹⁹	A1.2.3 Chinese standards GB50017 – 2003 Code for design of ste	A1.2.3 Chinese standards GB50017 – 2017 Code for design of steel structures

⁹⁸ Revision of updated standards.
⁹⁹ Revision of updated standards.

101. Annex A1.3.1 ¹⁰¹ A1.3.1 Australian and New Zealand standards AS 1110.2 2000 ISO metric hexagon holts and grades A and B A1.3.1 Australian and New Zealand standards AS 1111.2 2000 A1.3.1 Australian and New Zealand standards AS 1111.2 2015 A1.3.1 Australian and	Item	Current version				1		Amendments		
101. Annex A1.3.1 ¹⁰¹ A1.3.1 Australian and New Zealand standards AS 1110.2 2000 ISO metric hexagon bolts and grades A and B A1.3.1 Australian and New Zealand standards AS 1111.2 2000 A1.3.1 Australian and New Zealand standards AS 1112.2 2015	100. Annex A1.2.5 ¹⁰⁰	A1.2.5	UK and European standards A1			A1.2.5	5 UK and European standards			
101. Annex A1.3.1 ¹⁰¹ A1.3.1 Australian and New Zealand standards AS 1110.1: 2000 ISO metric hexagon bolts and grades A and B - Sorews A1.3.1 Australian and New Zealand standards AS 1111.2: 2000 A1.3.1 Australian and New Zealand standards AS 1111.2: 2015 A1.3.1 Australian and New Zealand			BS 29: 1976		ruling section (With			BS 29: 1976	Specification for carbon steel forgings above 150mm ruling section (Withdrawn in the UK, replaced by BS EN 10250-2: 2000)	
 - Part 2: Non-alloy quality and special steels BS EN 10293: 2015 Steel castings for general engineering uses DIN 1681: 1990 Cast steel for general engineering purposes: technical delivery conditions 101. Annex A1.3.1¹⁰¹ A1.3.1 Australian and New Zealand standards A1.3.1 Australian and New Zealand standards A5 1110.1: 2000 ISO metric hexagon bolts and grades A and B - Bolts AS 1110.2: 2000 ISO metric hexagon bolts and grades A and B - Screws AS 1111.2: 2000 ISO metric hexagon bolts and grade C - Bolts AS 1111.2: 2000 ISO metric hexagon bolts and grade C - Screws AS 1111.2: 2000 ISO metric hexagon bolts and grade C - Screws AS 1112.1: 2015 ISO metric hexagon bolts and grade C - Screws AS 1112.2: 2000 ISO metric hexagon bolts and grade C - Screws AS 1112.2: 2000 ISO metric hexagon bolts and grade C - Screws AS 1112.2: 2000 ISO metric hexagon nuts - Style 1 - Pr grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Style 2 - Pi grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Style 2 - Pi grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Style 2 - Pi grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Style 2 - Pi grades A and B AS 1112.2:			BS 3100: 1991		purposes (Withdra			BS 3100: 1991	Specification for steel castings for general engineering purposes (Withdrawn in the UK, replaced by BS EN 10293: 2005)	
DIN 1681: 1990 Cast steel for general engineering purposes: technical delivery conditions DIN 1681: 1990 Cast steel for general engineering purposes: technical delivery conditions 101. Annex A1.3.1 ¹⁰¹ A1.3.1 Australian and New Zealand standards As 1110.1: 2000 ISO metric hexagon bolts and grades A and B - Bolts A1.3.1 Australian and New Zealand standards AS 1110.2: 2000 ISO metric hexagon bolts and grades A and B - Bolts AS 1110.2: 2015 ISO metric hexagon bolts and screws - Prigrades A and B - Screws AS 1111.1: 2000 ISO metric hexagon bolts and grades C - Bolts AS 1111.1: 2015 ISO metric hexagon bolts and screws - Prigrades C - Bolts AS 1111.2: 2000 ISO metric hexagon bolts and grade C - Bolts AS 1111.2: 2015 ISO metric hexagon nuts - Sigrade C - Screws AS 1112.1: 2000 ISO metric hexagon nuts - Sigrades A and B SS 1112.2: 2015 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2015 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2015 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2015 ISO metric hexagon nuts - Sigrades A and B AS 1112.2: 2000 ISO m			BS EN 10250-2: 2	000				BS EN 10250-2: 2000	Open steel die forgings for general engineering purposes - Part 2: Non-alloy quality and special steels	
Interview delivery conditions delivery conditions 101. Annex A1.3.1 ¹⁰¹ A1.3.1 Australian and New Zealand standards AS 1110.1: 2000 A1.3.1 Australian and New Zealand standards AS 1110.2: 2000 A1.3.1 Australian and New Zealand standards AS 1110.2: 2015 ISO metric hexagon bolts and grades A and B - Bolts AS 1110.2: 2000 ISO metric hexagon bolts AS 1111.1: 2000 ISO metric hexagon bolts and grades A and B - Screws AS 1110.2: 2015 ISO metric hexagon bolts and grade C - Bolts AS 1111.2: 2015 ISO metric hexagon bolts and screws - Pr grade C - Bolts AS 1111.2: 2000 ISO metric hexagon bolts and grade C - Bolts AS 1111.2: 2015 ISO metric hexagon bolts and screws - Pr grade C - Bolts AS 1112.1: 2000 ISO metric hexagon nuts - Screws AS 1112.2: 2015 ISO metric hexagon nuts - Style 1 - Pr grade C - Screws AS 1112.1: 2000 ISO metric hexagon nuts - S grades A and B AS 1112.2: 2015 ISO metric hexagon nuts - Style 1 - Pr grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - S grades A and B AS 1112.2: 2015 ISO metric hexagon nuts - Style 2 - Pr grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - S grades A and B AS 1112.3: 2015 ISO metric hexagon nuts - Style 2 - Pr grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Style 1 - Pr grades A and B AS			BS EN 10293: 200	5	Steel castings for g	eneral engineering uses		BS EN 10293: 2015	Steel castings for general engineering uses	
A1.3.1Australian and New Zealand standards AS 1110.1: 2000A1.3.1Australian and New Zealand standards grades A and B - BoltsAS 1110.1: 2000ISO metric hexagon bolts and grades A and B - BoltsAS 1110.2: 2015ISO metric hexagon bolts and grades A and B - ScrewsAS 1110.2: 2000ISO metric hexagon bolts and grades A and B - ScrewsAS 1111.1: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1111.2: 2000ISO metric hexagon bolts and grade C - BoltsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1111.2: 2000ISO metric hexagon bolts and grade C - BoltsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1112.1: 2000ISO metric hexagon bolts and grade C - SorewsAS 1111.2: 2015ISO metric hexagon nuts - Style 1 - Pr grades A and BAS 1112.1: 2000ISO metric hexagon nuts - S grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.4: 2000ISO metric hexagon nuts - S grades A and BAS 1112.4: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.4: 2000ISO metric hexagon nuts - S grades A and BAS 1112.4: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.4: 2000ISO metric hexag			DIN 1681: 1990			neral engineering purposes: technical		DIN 1681: 1990	Cast steel for general engineering purposes: technical delivery conditions	
A1.3.1Australian and New Zealand standards AS 1110.1: 2000A is son and be add and iteration and iteratio	101 America 1 2 1101									
A.S. 17Adstrainant and New Zelarant standardsgraderdsgraderdsAS 1110.1: 2000ISO metric hexagon bolts and grades A and B - SortewsAS 1110.2: 2015ISO metric hexagon bolts and screws - Pri grades A and B - ScrewsAS 1110.2: 2000ISO metric hexagon bolts and grades A and B - ScrewsAS 1111.1: 2015ISO metric hexagon bolts and screws - Pri grade C - BoltsAS 1111.2: 2000ISO metric hexagon bolts and grade C - BoltsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pri grade C - SortewsAS 1112.1: 2000ISO metric hexagon bolts and grade C - ScrewsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pri grade C - ScrewsAS 1112.1: 2000ISO metric hexagon nuts - S grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 1 - Pri grades A and BAS 1112.1: 2000ISO metric hexagon nuts - S grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pri grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pri grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pri grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Char Product grades A and BAS 1112.4: 2000ISO metric hexagon nuts - CharAS/NIZS 1252: 2018High strength steel bolts with associated nuts	101. Annex A1.3.1						A1.3.1	Australian and New Zeal	and standards	
grades A and B - BoltsAS 1110.2: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1110.2: 2000ISO metric hexagon bolts and grades A and B - ScrewsAS 1111.1: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1111.1: 2000ISO metric hexagon bolts and grade C - BoltsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1111.2: 2000ISO metric hexagon bolts and grade C - ScrewsAS 1111.2: 2015ISO metric hexagon nuts - Style 1 - Pr grades A and BAS 1112.1: 2000ISO metric hexagon nuts - ScrewsAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - S grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.3: 2000ISO metric hexagon nuts - S grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Product grade C AS 1112.4: 2015AS 1112.4: 2000ISO metric hexagon nuts - Product gr AS 1112.4: 2000ISO metric hexagon nuts - S grades A and BAS 1112.4: 2015AS 1112.4: 2000ISO metric hexagon nuts - CharAS 1112.4: 2015ISO metric hexagon nuts - Char Product grades A and B			A1.3.1					AS 1110.1: 2015	ISO metric hexagon bolts and screws - Product grades A and B - Bolts	
AS 1110.2: 2000ISO metric hexagon bolts and grades A and B - ScrewsAS 1111.1: 2015ISO metric hexagon bolts and screws - Pr grade C - BoltsAS 1111.1: 2000ISO metric hexagon bolts and grade C - BoltsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pr grade C - ScrewsAS 1111.2: 2000ISO metric hexagon bolts and grade C - BoltsAS 1112.1: 2015ISO metric hexagon bolts and screws - Pr grade C - ScrewsAS 1112.1: 2000ISO metric hexagon nuts - St grades A and BAS 1112.1: 2015ISO metric hexagon nuts - Style 1 - Pr grades A and BAS 1112.1: 2000ISO metric hexagon nuts - St grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - St grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.3: 2000ISO metric hexagon nuts - St grades A and BAS 1112.4: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.4: 2000ISO metric hexagon nuts - St grades A and BAS 1112.4: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.4: 2000ISO metric hexagon nuts - St grades A and BAS 1112.4: 2015ISO metric hexagon nuts - Chamfered thin m Product grades A and BAS 1112.4: 2000ISO metric hexagon nuts - ChamAS/NZS 1252: 2016High strength steel bolts with associated nuts				AS 1110.1	: 2000			AS 1110.2: 2015	ISO metric hexagon bolts and screws - Product orades A and B - Screws	
AS 1111.1: 2000ISO metric hexagon bolts and grade C - BoltsAS 1111.2: 2015ISO metric hexagon bolts and screws - Pr grade C - ScrewsAS 1111.2: 2000ISO metric hexagon bolts and grade C - ScrewsAS 1112.1: 2015ISO metric hexagon nuts - Style 1 - Pr grades A and BAS 1112.1: 2000ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - Style A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.2: 2000ISO metric hexagon nuts - Style A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pr grades A and BAS 1112.3: 2000ISO metric hexagon nuts - Product gr AS 1112.4: 2010ISO metric hexagon nuts - Style A and BAS 1112.4: 2015AS 1112.4: 2000ISO metric hexagon nuts - CharAS/NZS 1252: 2016High strength steel bolts with associated nuts				AS 1110.2	2: 2000			AS 1111.1: 2015	ISO metric hexagon bolts and screws - Product	
AS 1111.2: 2000ISO metric hexagon bolts and grade C - ScrewsAS 1112.1: 2015ISO metric hexagon nuts - Style 1 - Pri grades A and BAS 1112.1: 2000ISO metric hexagon nuts - Si grades A and BAS 1112.2: 2015ISO metric hexagon nuts - Style 2 - Pri grades A and BAS 1112.2: 2000ISO metric hexagon nuts - Si grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Style 2 - Pri grades A and BAS 1112.2: 2000ISO metric hexagon nuts - Si grades A and BAS 1112.3: 2015ISO metric hexagon nuts - Product grade C AS 1112.4: 2015AS 1112.3: 2000ISO metric hexagon nuts - Product gr AS 1112.4: 2000ISO metric hexagon nuts - CharAS/NZS 1252: 2016High strength steel bolts with associated nuts				AS 1111.1	: 2000	2		AS 1111.2: 2015	ISO metric hexagon bolts and screws - Product	
AS 1112.1: 2000 ISO metric hexagon nuts - S grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Si grades A and B AS 1112.2: 2000 ISO metric hexagon nuts - Si grades A and B AS 1112.3: 2000 ISO metric hexagon nuts - Product gr AS 1112.4: 2000 ISO metric hexagon nuts - Product gr AS 1112.4: 2000 ISO metric hexagon nuts - Charn AS/NZS 1252: 2016 High strength steel bolts with associated nuts				AS 1111.2	2: 2000			AS 1112.1: 2015	ISO metric hexagon nuts - Style 1 - Product	
AS 1112.2: 2000 ISO metric hexagon nuts - S grades A and B AS 1112.3: 2015 ISO metric hexagon nuts - Product grade C AS 1112.3: 2000 ISO metric hexagon nuts - Product gr AS 1112.4: 2000 ISO metric hexagon nuts - Product gr AS 1112.4: 2000 ISO metric hexagon nuts - Charr AS/NZS 1252: 2016 High strength steel bolts with associated nuts				AS 1112.1	: 2000		1	AS 1112.2: 2015	ISO metric hexagon nuts - Style 2 - Product	
AS 1112.3: 2000 ISO metric hexagon nuts - Product gr Product grades A and B AS 1112.4: 2000 ISO metric hexagon nuts - Chan AS/NZS 1252: 2016 High strength steel bolts with associated nuts				AS 1112.2	2: 2000		1		ISO metric hexagon nuts - Product grade C	
				AS 1112.3	3: 2000	ISO metric hexagon nuts - Product g	r	AS 1112.4. 2015		
wasters for structural engineering				AS 1112.4	: 2000	ISO metric hexagon nuts - Cha Product grades A and B	n	AS/NZS 1252: 2016	High strength steel bolts with associated nuts and washers for structural engineering	
				AS/NZS 1	252: 1996		3	AS/NZS 1559: 2018	Hot-dip galvanized steel bolts with associated nuts and	
AS/NZS 1559: 1997 Hot-dip galvanized steel bolts with a washers for tower construction				AS/NZS 1	559: 1997	Hot-dip galvanized steel bolts with washers for tower construction	a			

¹⁰⁰ Revision of updated standards.¹⁰¹ Revision of updated standards.

Item	С	urrent version		А	mendments
102. Annex A1.3.2 ¹⁰²	A1.3.2 American standards ASTM A194/A194M-10a ASTM A307-10 ASTM A325-10 ASTM A325M-09 ASTM A490-10ae1 ASTM A490M-10 ASTM A563-07a ASTM F436-11 ASTM F436M-10 ASTM F1852-08	Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature, or Both Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength Standard Specification for Structural Bolts, Steel, Heat Treated, 830 MPa Minimum Tensile Strength (Metric) Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric) Standard Specification for Carbons and Alloy Steel Nuts Standard Specification for Hardened Steel Washers Standard Specification for Hardened Steel Washers Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength	A1.3.2	American standards ASTM A193-2014 ASTM A194/A194M-20a ASTM A307-21 ASTM A307-21 ASTM A325-2014 (withdrawn ASTM A325M-2014 (withdrawn) ASTM A490-14a (Withdrawn) ASTM A490M-14a (Withdrawn) ASTM F4363/A563M-21a ASTM F436-19 ASTM F1852-14 (Withdrawn) ASTM F1852-14 (Withdrawn) ASTM F3125/F3125M-21	 Standard Specification for Alloy-steel and Stainless Steel Bolting Materials for High Temperature Service Standard Specification for Carbon Steel, Alloy Steel and Stainless Steel Nuts for Bolts for High Pressure or High Temperature, or Both Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength (Metric) Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric) Standard Specification for Hardened Steel Washers Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120ksi and 150 ksi Minimum Tensile Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120ksi and 150 ksi Minimum Tensile Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120ksi and 150 ksi Minimum Tensile Standard Specification for High Strength Structural Bolt Assemblies, Steel and Alloy Steel, Heat Treated, 144ksi Minimum Tensile Strength

¹⁰² Revision of updated standards.

Item		C	urrent version			Amendments
103. Annex A1.3.5 ¹⁰³	A1.3.5	UK , European and ISC) standards	A1.3.5	UK , European and IS	O standards
		BS 3692: 2001	ISO metric precision hexagon bolts, screws and nuts, Specification		BS 3692: 2014	ISO metric precision hexagon bolts, screws and nuts, Specification
		BS 4190: 2001	ISO metric black hexagon bolts, screws and nuts, Specification		BS 4190: 2014	ISO metric black hexagon bolts, screws and nuts, Specification
		BS 4320: 1968	Specification for metal washers for general engineering purposes. Metric series		BS 4320: 1968	Specification for metal washers for general engineering purposes. Metric series (Withdrawn, and replaced by BS EN ISO 898-3:2018, BS EN ISO 7091:2000, BS EN ISO
		BS 4395-1: 1969	Specification for high strength friction grip bolts and associated nuts and washers for structural engineering -			7092:2000, BS EN ISO 7093:2000, and BS EN ISO 7094:2000)
		BS 4395-2: 1969	Part 1: General grade Specification for high strength friction grip bolts and associated nuts and washers for structural engineering - Part 2: Higher grade bolts and nuts and general grade washers		BS 4395-1: 1969	Specification for high strength friction grip bolts and associated nuts and washers for structural engineering - Part 1: General grade (Withdrawn, and replaced by BS EN 14399-1: 2015, BS EN 14399-2: 2015, BS EN 14399-3: 2015, BS EN 14399-4: 2015, BS EN 14399-5: 2015, BS EN 14399-6: 2015, BS EN 14399-7: 2018, and BS EN
		BS 4604-1: 1970	Specification for the use of high strength friction grip bolts in structural steelwork - Metric series - Part 1: General grade (Withdrawn in the UK, replaced by BS EN 1993- 1.8: 2005)		BS 4395-2: 1969	14399-8: 2018) Specification for high strength friction grip bolts and associated nuts and washers for structural engineering - Part 2: Higher grade bolts and nuts and general grade washers (Withdrawn, and replaced by BS EN 14399-1)
		BS 4604-2: 1970	Specification for the use of high strength friction grip bolts in structural steelwork - Metric series - Part 2: Higher grade (parallel shank) (Withdrawn in the UK, replaced by BS EN 1993-1-8; 2005)			2005, BS EN 14399-2: 2015, BS EN 14399-3: 2015, BS EN 14399-4: 2015, BS EN 14399-5: 2015, BS EN 14399- 6: 2015, BS EN 14399-7: 2018, and BS EN 14399-8: 2018)
		BS EN 1993-1-8: 2005 BS 4933: 2010	Eurocode 3 ; Design of steel structure. Design of joints Specification for ISO metric black cup and countersunk		BS 4604-1: 1970	Specification for the use of high strength friction grip bolts in structural steelwork - Metric series - Part 1: General grade (Withdrawn in the UK, replaced by BS EN 1993-1.8: 2005)
		BS 7419: 1991	head bolts and screws with hexagon nuts Specification for holding down bolts		BS 4604-2: 1970	Specification for the use of high strength friction grip bolts
		BS 7644-1: 1993	Direct tension indicators - Part 1: Specification for compressible washers (Replaced by BS EN 14399-9:			in structural steelwork - Metric series - Part 2: Higher grade (parallel shank) (Withdrawn in the UK, replaced by BS EN 1993-1-8: 2005)
			2009 but remains current)		BS EN 1993-1-8: 2005	Eurocode 3 ; Design of steel structure. Design of joints
		BS 7644-2: 1993	Direct tension indicators - Part 2: Specification for nut face and bolt face washers (Replaced by BS EN 14399-		BS 4933: 2010	Specification for ISO metric black cup and countersunk head bolts and screws with hexagon nuts
			9: 2009 but remains current)		BS 7419: 1991	Specification for holding down bolts
					BS 7644-1: 1993	Direct tension indicators - Part 1: Specification for compressible washers (Replaced by BS EN 14399-9: 2009 but remains current)
					BS 7644-2: 1993	Direct tension indicators - Part 2: Specification for nut face and bolt face washers (Replaced by BS EN 14399-9: 2009 but remains current)

¹⁰³ Revision of updated standards.

Item	(Current version	A	Amendments
Annex A1.3.5				
(Cont'd)	BS EN 14399-9: 2009 BS EN ISO 4014: 2011 BS EN ISO 4016: 2011 BS EN ISO 4017: 2011 BS EN ISO 4018: 2011 BS EN ISO 4032: 2001 BS EN ISO 4034: 2001 BS EN ISO 7091: 2000	High strength structural bolting for preloading. System HR or HV. Part 9: Direct tension indicators for bolts and nuts assemblies Hexagon head bolts: Product grades A and B Hexagon head screws: Product grades A and B Hexagon nuts, style 1: Product grades A and B Hexagon nuts, style 2: Product grades A and B Hexagon nuts: Product grade C Plain washers: Normal series, Product grade C	BS EN 14399-1: 2015 BS EN 14399-2: 2015 BS EN 14399-3: 2015 BS EN 14399-4: 2015 BS EN 14399-5: 2015 BS EN 14399-6: 2015 BS EN 14399-7: 2018 BS EN 14399-7: 2018 BS EN 14399-9: 2018 BS EN 14399-9: 2018 BS EN 150 898-1:2013 BS EN ISO 898-2:2012 BS EN ISO 898-3:2018+A1:21 BS EN ISO 4014: 2011 BS EN ISO 4016: 2011 BS EN ISO 4017: 2011 BS EN ISO 4018: 2011 BS EN ISO 4032: 2001 BS EN ISO 4032: 2001 BS EN ISO 4034: 2001 BS EN ISO 4034: 2001 BS EN ISO 4034: 2001	 High-strength structural bolting assemblies for preloading. General requirements. High-strength structural bolting assemblies for preloading. Suitability for preloading. High-strength structural bolting assemblies for preloading. System HR. Hexagon bolt and nut assemblies. High-strength structural bolting assemblies for preloading. Plain vashers. High-strength structural bolting assemblies for preloading. Plain washers. High-strength structural bolting assemblies for preloading. Plain chamfered washers. High-strength structural bolting assemblies for preloading. System HV. Hexagon fit bolt and nut assemblies. High-strength structural bolting assemblies for preloading. System HR. Countersunk head bolt and nut assemblies. High-strength structural bolting for preloading. System HR. Countersunk head bolt and nut assemblies. High strength structural bolting for preloading. System HR. Part 9: Direct tension indicators for bolts and nuts assemblies. Mechanical properties of fasteners made of carbon steel and alloy steel. Bolts, screws and studs with specified property classes. Coarse thread and fine pitch thread. Mechanical properties of fasteners made of carbon steel and alloy steel. Nuts with specified property classes. Coarse thread and fine pitch thread. Fasteners. Mechanical properties of fasteners with specified property classes View details. Hexagon head bolts: Product grades A and B Hexagon head screws: Product grades A and B Hexagon head screws: Product grades A and B Hexagon nuts, style 1: Product grades A and B Hexagon nuts, style 2: Product grades A and B Hexagon nuts, style 2: Product grades A and B Hexagon nuts, style 2: Product grades A and B Hexagon nuts, style 2: Product grades A and B Hexagon nuts, style 2: Product grades A and B Hexagon nuts; Product grades C Plain wa

Item	Current version	Amendments
104. Annex A1.4.1.1 ¹⁰⁴	A1.4.1.1 American standards AWS D1.1/D1.1M: 2010 Structural Welding Code - Steel AWS D1.3/D1.3M: 2008 Structural Welding Code - Sheet Steel	A1.4.1.1 American standards AWS D1.1/D1.1M: 2010 Structural Welding Code - Steel AWS D1.3/D1.3M: 2008 Structural Welding Code - Sheet Steel AWS A5.5/5.5M: 2014 Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.23/5.23M: 2021 Specification for Low-Alloy and High Manganese Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M: 2005 Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M: 2010 Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding

¹⁰⁴ Revision of updated standards.

Item	Cu	irrent version	1	Amendments
105. Annex A1.4.1.2 ¹⁰⁵	BS EN 758: 1997 BS EN ISO 17632: 2008 BS EN 1011-1: 2009 BS EN 1011-2: 2001 BS EN 22553: 1995	 Welding consumables. Tubular cored electrodes for metal arc welding with and without a gas shield of non- alloy and fine grain steels. Classification (Withdrawn in the UK, replaced by BS EN ISO 17632: 2008) Welding consumables. Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non- alloy and fine grain steel. Classification Welding - Recommendations for welding of metallic materials. Part 1: General guidance for arc welding Welding - Recommendations for welding of metallic materials. Part 2: Arc welding of ferritic steels Welded, brazed and soldered joints - Symbolic representation on drawings 	BS EN 758: 1997 BS EN ISO 17632: 2008 BS EN 1011-1: 2009 BS EN 1011-2: 2001 BS EN 22553: 1995 BS EN ISO 14174: 2018 BS EN ISO 14174: 2018 BS EN ISO 18275: 2018 BS EN ISO 18276: 2017 BS EN ISO 16834: 2012 BS EN ISO 26304: 2018	 Welding consumables. Tubular cored electrodes for metal arc welding with and without a gas shield of non-alloy and fine grain steels. Classification (Withdrawn in the UK, replaced by BS EN ISO 17632: 2008) Welding consumables. Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non-alloy and fine grain steel. Classification Welding in the steel. Classification Welding - Recommendations for welding of metallic materials. Part 1: General guidance for arc welding Welding - Recommendations for welding of metallic materials. Part 2: Arc welding of ferritic steels Welding consumables. Fluxes for submerged arc welding and electroslag welding. Classification. Welding consumables. Fluxes for submerged arc welding and electroslag welding. Classification. Welding consumables – Covered electrodes for gasshielded and non-gas-shielded metal arc welding of high-strength steels – Classification Welding consumables – Tubular cored electrodes for gasshielded and non-gas-shielded metal arc welding of high-strength steels – Classification Welding consumables – Wire electrodes, wires, rods and deposits for gas shielded arc welding of high-strength steels – Classification Welding consumables – Solid wire electrodes, tubular cored electrodes and electrodes and electrode-flux combinations for submerged arc welding of high strength steels – Classification (ISO 26304:2017)

¹⁰⁵ Revision of updated standards.

Item	Current version	Amendments
106. Annex A1.4.2.2 ¹⁰⁶	A1.4.2.2 UK European and ISO standards BS EN 288-3: 1992 Specification and approval of welding procedures metallic materials. Part 3: Welding procedure tests the arc welding of steels (Withdrawn in the UK, repla by BS EN ISO 15614-1: 2004 BS EN ISO 15614-1: 2004 Specification and qualification of welding procedure for metallic materials. Welding procedure test. Part 1: and gas welding of steels and arc welding of nickel nickel alloys BS EN ISO 15614-8:2002 Specification and qualification of welding procedures metallic materials – welding procedure test. Part 1: welding of tubes to tube-plate joints	or arc welding of steels (Withdrawn in the UK, replaced by BS EN ISO 15614-1: 2017 +A1: 2019) ed BS EN ISO 15607:2019 Specification and qualification of welding procedures for metallic materials – General rules BS EN ISO 15609-1:2019(E) Specification and qualification of welding procedures for metallic materials – Welding procedures specification – Part 1: Arc welding rc BS EN ISO 15614-1: 2017 or +A1: 2019 Specification and qualification of welding procedures for metallic materials - Welding procedures for metallic materials - Welding procedures to rest. Part 1: Arc welding procedure test - Part 1: Arc metallic materials - Welding procedure te
107. Annex A1.4.3.2 ¹⁰⁷	A1.4.3.2 UK European and ISO standards BS EN 287-1: 2004 Qualification test of welders. Fusion welding. Part Steels ISO 9606-1: 1994 Approval testing of welders. Fusion welding. Part Steels BS EN 1418:1998 Welding personnel. Approved testing of weld operators for fusion welding and resistance weld setter for fully mechanized and automatic welding of meta materials BS 4871-3:1985 Specification for approval testing of welders to approve welding procedure. Part 3: Arc welding of tube to tut plate joints in metallic materials BS 4872-1:1982 Specification for approval testing of welders to welding of steel	ISO 2602-11:2017 Steels (Withdrawn, and replaced by BS EN ISO 9606- 1:2017) ISO 9608-1: 2017 Qualification testing of welders. Fusion welding. Steels BS EN 1418:1998 Welding personnel. Approved testing of welding operators for fusion welding and resistance weld setters for fully mechanized and automatic welding of metallic materials (Withdrawn, and replaced by BS EN ISO 14732:2013) ISO 9608-1: 2017 Specification for approval testing of welders to approved welding procedure. Part 3: Arc welding of tube to tube- plate joints in metallic materials ISO 9608-1: 2017 Specification for approval testing of welders to welding

¹⁰⁶ Revision of updated standards.¹⁰⁷ Revision of updated standards.

109 A = 1.4.4.2108				44.4.4.2	UK European and ISO stand	4-
108. Annex $1.4.4.2^{108}$	A1.4.4.2	UK European and ISO standa	rds	A1.4.4.2	UK European and ISO stand BS 3923: Part 1: 1986	ards Methods for ultrasonic examination of welds. Part 1:
		BS 3923: Part 1: 1986	Methods for ultrasonic examination of welds. Part 1: Methods for manual examination of fusion welds in ferritic steels (Withdrawn in the UK, replaced by BS EN 1714: 1998)			Methods for manual examination of fusion welds in ferritic steels (Withdrawn in the UK, replaced by BS EN 1714: 1998)
		BS EN 1714: 1998	Non-destructive testing of welded joints. Ultrasonic examination of welded joints (Withdrawn in the UK, replaced by BS EN ISO 17640: 2010)		BS EN 1714: 1998	Non-destructive testing of welded joints. Ultrasonic examination of welded joints (Withdrawn in the UK, replaced by BS EN ISO 17640: 2018)
		BS EN ISO 17640: 2010	Non-destructive testing of welds. Ultrasonic testing, Techniques, testing levels and assessment		BS EN ISO 17640: 2018	Non-destructive testing of welds. Ultrasonic testing, Techniques, testing levels and assessment
		BS EN 571-1: 1997	Non-destructive testing. Penetrant testing. Part 1 General principles		BS EN 571-1: 1997	Non-destructive testing. Penetrant testing. Part 1 : General principles (Withdrawn and replaced by BS EN
		BS EN 970: 1997	Non-destructive examination of fusion welds. Visual			ISO 34521-1:2021)
			examination (Withdrawn in the UK, replaced by BS EN ISO 17637: 2011)		BS EN ISO 3452-1 :2021	Non-destructive testing. Penetrant testing. General principles
		BS EN ISO 17637: 2011	Non-destructive testing of welds. Visual testing of fusion welded joints		BS EN 970: 1997	Non-destructive examination of fusion welds. Visual examination (Withdrawn in the UK, replaced by BS EN
		BS EN 1290: 1998	Non-destructive examination of welds. Magnetic particle examination of welds (Withdrawn in the UK, replaced by BS EN ISO 17638: 2009)			ISO 17637: 2016)
		BS EN ISO 17638: 2009	Non-destructive testing of welds. Magnetic particle testing		BS EN 1290: 1998	Non-destructive examination of welds. Magnetic particle examination of welds (Withdrawn in the UK, replaced by BS EN ISO 17638; 2018)
		BS EN 1435: 1997	Non-destructive examination of welds. Radiographic examination of welded joints		BS EN ISO 17637: 2016	Non-destructive testing of welds. Visual testing of fusion
		BS EN ISO 9934-1: 2001	Non-destructive testing. Magnetic particle testing. Part 1 : General Principles			welded joints
			General Philippies		BS EN ISO 17638: 2016	Non-destructive testing of welds. Magnetic particle testing
		The abstracted essentials for t	lypically used welding symbols are given in Annex C.		BS EN ISO 17639: 2022	Destructive tests on welds in metallic materials, Macroscopic and microscopic examination of welds
					BS EN 1435: 1997	Non-destructive examination of welds. Radiographic examination of welded joints (Withdrawn, and replaced by BS EN ISO 17636-1:2013, and BS EN ISO 17636-2:2013)
					BS EN ISO 9934-1: 2016	Non-destructive testing. Magnetic particle testing. Part 1 : General Principles
					BS EN ISO 17636-1:2013	Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with film
					BS EN ISO 17636-2:2013	Non-destructive testing of welds. Radiographic testing. X- and gamma-ray techniques with film

¹⁰⁸ Revision of updated standards.

Item	Current version	Amendments
		BS EN ISO 10893-2:2011 + A1:2020 Non-destructive testing of steel tubes. Automated eddy current testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of imperfections
		BS EN ISO 10893-3:2011 + A1:2020 Non-destructive testing of steel tubes. Automated full peripheral flux leakage testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection of longitudinal and/or transverse imperfections BS EN ISO 10893-8:2011 + A1:2020 Non- destructive testing of steel tubes. Automated ultrasonic testing of seamless and welded steel tubes for the detection of laminar imperfections
		BS EN ISO 10893-9:2011 + A1:2020 Non-destructive testing of steel tubes. Automated ultrasonic testing for the detection of laminar imperfections in strip/plate used for the manufacture of welded steel tubes
		BS EN ISO 10893-10:2011 + A1:2020 Non-destructive testing of steel tubes. Automated full peripheral ultrasonic testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of longitudinal and/or transverse imperfections

Item		Cu	rrent version		A	mendments
109. Annex 1.4.5 ¹⁰⁹				A1.4.5	Destructive test methods	; for welds
	A1.4.5	Destructive test methods BS EN 875:1995	for welds Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and examination (Withdrawn in the UK, replaced by BS EN		BS EN 875:1995	Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and examination (Withdrawn in the UK, replaced by BS EN ISO 9016: 2022)
		BS EN ISO 9018: 2011	ISO 9016: 2011) Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and		BS EN ISO 9016: <mark>2022</mark>	Destructive tests on welds in metallic materials. Impact tests. Test specimen location, notch orientation and examination
		BS EN 876:1995	examination Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints (Withdrawn in the UK, replaced by BS EN ISO		BS EN 876:1995	Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints (Withdrawn in the UK, replaced by BS EN ISO 5178: 2019)
		BS EN ISO 5178: 2011	5178: 2011) Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints		BS EN ISO 5178: 2019	Destructive tests on welds in metallic materials. Longitudinal tensile tests on weld metal in fusion welded joints
		BS EN 895:1995	Destructive tests on welds in metallic materials. Transverse tensile test (Withdrawn in the UK, replaced by BS EN ISO 4136: 2011)		BS EN 895:1995	Destructive tests on welds in metallic materials. Transverse tensile test (Withdrawn in the UK, replaced by BS EN ISO 4136: 2022)
		BS EN ISO 4138: 2011	Destructive tests on welds in metallic materials. Transverse tensile test		BS EN ISO 4136: <mark>2022</mark> BS EN 910:1998	Destructive tests on welds in metallic materials. Transverse tensile test Destructive tests on welds in metallic materials. Bend
		BS EN 910:1996	Destructive tests on welds in metallic materials. Bend tests (Withdrawn in the UK, replaced by BS EN ISO		BS EN ISO 5173: 2010	tests (Withdrawn in the UK, replaced by BS EN ISO 5173: 2010) Destructive tests on welds in metallic materials. Bend
		BS EN ISO 5173: 2010	5173: 2010) Destructive tests on welds in metallic materials. Bend tests		BS EN 1043-1:1998	tests Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints (Withdrawn in
		BS EN 1043-1:1996	Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints		BS EN ISO 9015: 2018	the UK, replaced by BS EN ISO 9015: 2016) Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints
			(Withdrawn in the UK, replaced by BS EN ISO 9015: 2011)		BS EN 1320:1997	Destructive tests on welds in metallic materials. Fracture tests (Withdrawn and replaced by BS EN ISO 9017:2018)
		BS EN ISO 9015: 2011	Destructive tests on welds in metallic materials. Hardness testing hardness test on arc welded joints		BS EN 1321:1997	Destructive tests on welds in metallic materials. Macroscopic and microscopic examination of welds (Withdrawn and replaced by BS EN ISO 17639:2022)
		BS EN 1320:1997	Destructive tests on welds in metallic materials. Fracture tests		BS EN ISO 9017:2018	Destructive tests on welds in metallic materials. Fracture test
		BS EN 1321:1997	Destructive tests on welds in metallic materials. Macroscopic and microscopic examination of welds		BS EN ISO 17639:2022 BS EN ISO 6505:1-3: 2005	Destructive tests on welds in metallic materials, Macroscopic and microscopic examination of welds Metallic materials. Brinell hardness test
		BS EN ISO 6505:1-3: 2005 BS EN ISO 6507:1-3: 2005	Metallic materials. Brinell hardness test Metallic materials. Vickers hardness test		BS EN ISO 6507:1-3: 2005	Metallic materials. Vickers hardness test

Item	Current ve		Current version		Amendments	
110. Annex A1.7.5 ¹¹⁰	A1.7.5	UK, European and ISC) standards	A1.7.5	UK, European and ISC) standards
		BS 5950-7: 1992	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections		BS 5950-7: 1992	Structural use of steelwork in building. Specification for materials and workmanship: cold formed sections
		BS EN 10149-1: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions		BS EN 10149-1: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 1: General delivery conditions
		BS EN 10149-2: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 2: Delivery conditions for thermomechanically rolled steels		BS EN 10149-2: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 2: Delivery conditions for thermomechanically rolled steels
		BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels		BS EN 10149-3: 1996	Specification for hot-rolled flat products made of high yield strength steels for cold forming. Part 3: Delivery conditions for normalized or normalized rolled steels
		BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non- alloy and fine grain steels. Part 1: Technical delivery		BS EN 10219-1: 2006	Cold formed welded structural hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery requirements
			requirements		BS EN 10219-3: 2020	Cold formed welded structural hollow sections. Part 3:
		BS EN 10249-1: 1996	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions			Technical delivery conditions for high strength and weather resistant steels
		BS EN 10268: 2006	Cold-rolled steel flat products with high yield strength for cold forming – Technical delivery conditions		BS EN 10249-1: 1996	Cold formed sheet piling of non alloy steels. Part 1: Technical delivery conditions
					BS EN 10268: 2006	Cold-rolled steel flat products with high yield strength for cold forming – Technical delivery conditions

¹⁰⁹ Revision of updated standards.¹¹⁰ Revision of updated standards.

Item	Current version		A	Amendments
111. Annex A2.3 ¹¹¹	A2.3 UK and European Stand BS 5950: Structural use of ste Part 1: 2000		A2.3 UK and European Star BS 5950: Structural use of st Part 1: 2000	
	Part 2: 2001	2005, BS EN 1993-5: 2007, BS EN 1993-6: 2007 & BS EN 1993-1-8: 2005) Specification for materials, fabrication and erection - Rolled and welded sections (Withdrawn in the UK,	Part 2: 2001	2005, BS EN 1993-5: 2007, BS EN 1993-6: 2007 & BS EN 1993-1-8: 2005) Specification for materials, fabrication and erection - Rolled and welded sections (Withdrawn in the UK,
	Part 3: 1990	replaced by BS EN 1090-2: 2008) Design in composite construction - Code of practice for design of simple and continuous composite beams (Withdrawn in the UK, replaced by BS EN 1994-1-1: 2004)	Part 3: 1990	replaced by BS EN 1090-2: 2008) Design in composite construction - Code of practice for design of simple and continuous composite beams (Withdrawn in the UK, replaced by BS EN 1994-1-1: 2004)
	Part 4: 1994	Code of practice for design of composite slabs with profiled steel sheeting (Withdrawn in the UK, replaced by BS EN 1994-1-1: 2004)	Part 4: 1994 Part 5: 1998	Code of practice for design of composite slabs with profiled steel sheeting (Withdrawn in the UK, replaced by BS EN 1994-1-1: 2004) Code of practice for design of cold formed thin gauge
	Part 5: 1998	Code of practice for design of cold formed thin gauge sections (Withdrawn in the UK, replaced by BS EN 1993- 1-3: 2006)	Part 6: 1995	sections (Withdrawn in the UK, replaced by BS EN 1993- 1-3: 2006) Code of practice for design of light gauge profiled steel
	Part 6: 1995	Code of practice for design of light gauge profiled steel sheeting (Withdrawn in the UK, replaced by BS EN 1993- 1-3: 2006)	Part 7: 1992	sheeting (Withdrawn in the UK, replaced by BS EN 1993- 1-3: 2006) Specification for materials and workmanship: cold formed
	Part 7: 1992 Part 8: 2003	Specification for materials and workmanship: cold formed sections Code of practice for fire resistant design (Withdrawn in	Part 8: 2003	sections Code of practice for fire resistant design (Withdrawn in the UK, replaced by BS EN 1993-1-2: 2005)
	BS 499-2c: 1999	the UK, replaced by BS EN 1993-1-2: 2005) Welding terms and symbols. Part 2c : European arc welding symbols in chart form	BS 499-2c: 1999	Welding terms and symbols. Part 2c : European arc welding symbols in chart form
	BS 5427-1: 1996	Code of practice for the use of profiled sheet for roof and wall cladding on buildings. Part 1: Design	BS 5427-1: 1996 BS 7608: 1993	Code of practice for the use of profiled sheet for roof and wall cladding on buildings. Part 1: Design Code of Practice for Fatigue Design and Assessment of
	BS 7608: 1993 BS EN 1090-2: 2008	Code of Practice for Fatigue Design and Assessment of Structures Execution of steel structures and aluminium structures.	BS EN 1090-1: 2009+A1:20	Structures 11 Execution of steel structures and aluminium structures. Part 1: Requirements for conformity assessment of
	BS EN 1991-2: 2003	Part 2 : Technical requirements for the execution of steel structures Eurocode 1: Actions on structures. Part 2: Traffic loads	BS EN 1090-2: 2008	structural components Execution of steel structures and aluminium structures. Part 2 : Technical requirements for the execution of steel
		on bridges	BS EN 1991-2: 2003	structures Eurocode 1: Actions on structures. Part 2: Traffic loads on bridges

¹¹¹ Revision of updated standards.

Item	Current version	Amendments
112. Page Index of Annex A ¹¹²	ANNEX A REFERENCES 341 A1 ACCEPTABLE STANDARDS AND REFERENCES 341 A1.1 Steel materials 341 A1.2 Castings and forgings 343 A1.3 Bolts 344 A1.4 Welding 347 A1.5 Materials for composite design 350 A1.6 Shear studs 350 A1.7 Cold-formed steel materials 350 A1.8 Dimensions and tolerances of sections 351 A1.9 Protective treatment 353 A1.10 Other acceptable references 353 A2 INFORMATIVE REFERENCES 354 A2.1 Practice Notes for Authorized Persons and Registered Structural Engineers 354 A2.3 UK and European Standards 355 A2.4 Australian Standards 355 A2.5 General references 355	ANNEX A REFERENCE S.
113. Annex D1 ¹¹³	D1 TESTING TO ESTABLISH STEEL CLASS	D1 TESTING TO ESTABLISH STEEL CLASS
	Class 2 steel:	Class 1 steel and Class 1H steel:
	Where steel is not supplied in accordance with one of the recognized	No additional testing is needed as these steels comply with one of the
	reference material standards in Annex A1.1 and the supplier has an	reference material standards in Annex A1.1 and the basic requirements
	acceptable quality assurance system, testing should be carried out to	given in clause 3.1.2, and the steels are produced from a manufacturer
	establish compliance with one of the five reference material standards in	with an acceptable Quality Assurance system.
	Annex A1.1. Tests shall include tensile strength and ductility, notch	
	toughness and chemical composition. At a minimum one test in each	Class 2 steel:
	category shall be made for every 20 tonnes of steel or part thereof the	Where steels not supplied in accordance with one of the
	same product form, of the same range of thickness or diameter, and of	recognized reference material standards in Annex A1.1 but are
	the same cast. The results of each test and the characteristic value	produced from a manufacturer with an acceptable Quality Assurance
	obtained by statistical analysis shall not be less than the value required	system, such steels shall be tested to show that they comply with

Revision of page index of Annex A.
 Addition for Class 1 and Class 1H steel; Revision of Class 2 and Class 3 steel.

Item	Current version	Amendments
	by the standard. Table D1a below lists the essential performance	one of the reference material standards in Annex A1.1.
	requirements for hot rolled structural steel sections, flats, plates and hot	Tests shall include tensile strength and ductility, notch toughness and
	finished and cold formed structural hollow sections. Table D1b lists	chemical compositions.
	the essential performance requirements for structural sections of cold	At a minimum one test in each category shall be made for every 20
	formed steel.	tonnes of steels or part thereof the same product form, of the same
	Class 3 steel:	range of sizes and thicknesses, and of the same cast.
	Uncertified steel shall be tested for tensile strength and ductility to	The results of each test and the characteristic value obtained by statistical
	demonstrate that it has a yield strength of at least 170N/mm ² , an	analysis shall not be less than the value required by the standard.
	elongation of at least 15% and an ultimate tensile strength of at least	
	300N/mm ² . One test in each category shall be made for every 20	Class 3 steel:
	tonnes of steel or part thereof the same product form, of the same	Uncertified steels shall be tested for tensile strength and ductility to
	thickness or diameter. If the steel is to be welded, the Responsible	demonstrate that they have a yield strength of at least 170N/mm ² , an
	Engineer may additionally require tests for weldability as described in	elongation of at least 15% and a tensile strength of at least
	Annex D1.1.	300N/mm ² . One test in each category shall be made for every 20
	Quality control of testing	tonnes of steels or part thereof the same product form, of the same
	The testing shall be carried out to meet the reference material standards	range of sizes and thicknesses. If the steels are to be welded, the
	given in Annex A1.1 by a HOKLAS accredited laboratory or by other	Responsible Engineer may additionally require tests for weldability as
	laboratory accreditation bodies which have reached mutual recognition	described in Annex D1.1.
	agreements/arrangements with HOKLAS.	Quality control of testing
		The testing shall be carried out to meet the reference material standards
		listed in Annex A1.1 by a HOKLAS accredited laboratory or by other
		laboratory accreditation bodies which have reached mutual recognition
		agreements/arrangements with HOKLAS.

Item	Current version	Amendments
114. Annex D1.1 ¹¹⁴	D1.1 Essential requirements Strength: The design strength shall be the minimum yield strength but no greater than the minimum tensile strength divided by a materia	
	factor with a minimum value of 1.2. Resistance to brittle fracture:	 Ductility Weldability
	The minimum average Charpy V-notch impact test energy at the required design temperature shall be in accordance with clause 3.2 of the Code in order to provide sufficient note toughness.	h Table D1a lists the essential performance requirements for typical hot
	Ductility: The elongation on a gauge length of $5.65\sqrt{S_0}$ is not to be less that 15% where S ₀ is the cross sectional area of the section.	for typical cold formed thin gauge steel.
	Weldability: The chemical composition and maximum carbon equivale value for Class 1 steel shall conform to the respective reference	
	materials standard in Annex A1.1. The maximum carbon equivalent value for steels to Class 2 sha not exceed 0.48% on ladle analysis and the carbon content sha	u
	not exceed 0.24%. For general applications the maximu sulphur content shall not exceed 0.03% and the maximu phosphorus contents shall not exceed 0.03%. When throug thickness quality (Z quality) steel is specified the sulphur conte	n h

¹¹⁴ Revision of basic requirement of structural steel with simplified description.

Item	Current version					Amendments	
			cal compositions of variou the requirements stipulate				
	in the national	standards where they	are manufactured.				
	If it is require	d to weld Class 3 stee	el, then it shall also compl	ly			
with the above.							
115. Table D1a ¹¹⁵		erformance requirements for steel and cold formed steel				rformance requirements for I teel and cold formed steel	not rolled and hot finished
	Performance requirement	Specified by	Additional requirements for steel in structures designed by the plastic theory		Performance requirement	Specified by	Additional requirements for steel in structures designed by the plastic theory
	Minimum yield strength	Smaller of yield strength (R_{eH}), 0.2% proof strength ($R_{g 0,2}$) and stress at 0.5% total elongation ($R_{e0,2}$)	R _m /R _{eH} ≥ 1.2 (1.2 is a minimum and a higher value may be required)		Minimum yield strength	Smaller of yield strength (R_{eH}), 0.2% proof strength ($R_{\sigma 0.2}$) and stress at 0.5% total elongation ($R_{\sigma 0.2}$)	$R_m/R_{eff} \ge 1.2$ (1.2 is a minimum and a higher value may be required)
	Minimum tensile strength	Tensile strength (R _n)			Minimum tensile strength	Tensile strength (R _n)	
	Notch toughness	Minimum average Charpy V-notch impact test energy at specified temperature	None		Notch toughness	Minimum average Charpy V-notch impact test energy at specified temperature	None
	Ductility	Elongation in a specified gauge length Bend test	Stress-strain diagram to have a plateau at yield stress extending for at least six times the yield strain. The elongation on a gauge length of $\delta.65 \sqrt{S_n}$ is not to be less than 15% where S_n is the cross sectional area of the section		Ductility	Elongation in a specified gauge length	Stress-strain diagram to have a plateau at yield stress extending for at least six times the yield strain. The elongation refers to Clause 3.1.2
	Weldability	Maximum carbon equivalent value, Carbon content, Sulphur and Phosphorus contents	None		Weldability	Maximum carbon equivalent value, Carbon content, Sulphur and Phosphorus contents	None
	Through thickness properties (only for certain situations, see 3.1.5 and 14.3.3.4)	Elongation to failure in the through thickness direction	None		Through thickness properties (only for certain situations, see 3.1.5 and 14.3.3.4)	Elongation to failure in the through thickness direction	None

¹¹⁵ Revision of ductility performance requirement.

Item	Current version	Amendments
116. Annex D1.2 ¹¹⁶	D1.2 Additional requirements for high strength steels	
	Steel for plates and section with a yield strength greater than 460 N/mm ²	
	but not exceeding 690 N/mm ² shall comply with the basic requirements	
	given in Table D1a. It shall be produced by a manufacturer in	
	accordance with an acceptable quality assurance system. Data shall be	
	available to show that the specified properties in terms of yield strength,	
	tensile strength, Charpy impact energy and chemical composition are	
	consistently obtained. A minimum of one test in each category shall	
	be made for every 20 tonnes of steel or part thereof the same product	
	form, of the same range of thickness or diameter, and of the same cast.	
	The category, thickness or diameter range should be classified in the	
	same way as the product standard.	

¹¹⁶ Deletion of Annex D1.2.

Item	Current version	Amendments
117. Annex D1.3 ¹¹⁷	D1.3 Design strength for high strength steels	
	High strength steels with yield stresses above 460 N/mm ² but not	
	exceeding 690 N/mm ² typically obtain their strength through a	
	quench and tempering heat-treatment process and are known as	
	RQT steels. This presents additional constraints in terms of	
	fabrication and design, particularly with welding because heat	
	may affect the strength of the parent steel.	
	Different manufacturers use different manufacturing processes	
	and chemical compositions for steel and therefore the	
	Responsible Engineer should obtain the particular product	
	specification and ensure that it complies with the requirements	
	for design strength, buckling characteristics, ductility,	
	weldability requirements, welding consumable requirements	
	(under matched / matched / over-matched), pre-heat	
	requirements, inter-pass temperature limits, etc.	
118. Annex D1.4 ¹¹⁸	D1.4 Quality control of testing	D1.2 Quality control of testing
	The testing shall be carried out to meet the reference material	The testing shall be carried out to meet the reference material
	standards as contained in Annex A1.1 by a HOKLAS accredited	standards as contained in Annex A1.1 by a HOKLAS
	laboratory or by other accredited laboratories which have	accredited laboratory or by other accredited laboratories which
	reached mutual recognition agreements/arrangements with HOKLAS.	have reached mutual recognition agreements/arrangements with HOKLAS.

¹¹⁷ Deletion of Annex D1.3.¹¹⁸ Renumbering of Annex D1.4 to D1.2.

9. Table D2 ¹¹⁹		60 70 80 70				h strength steels Elongation	Table D	2 - Minimum Steel	material pr Source	operty requirem Yield Strength	nents for various h Ultimate Strength	igh strength steels Elongation
	HT690 HT780	70 80 70	Australia		590-730						Us N/mm ²	
	HT780	80 70		600		-730 20%	Bisplat	e 60	Australia	Y ₈ N/mm ² 500	590-730	20%
	HT780	70	-	000	690-830	20%	Dispia	70	Australia	600	690-830	20%
	HT780			690	790-930	18%			-			
			Japan	590	690	(Min 20% regd.)		80		690	790-930	18%
		80		685	780	(Min 20% regd.)	HT690	70	Japan	590	690	(Min 20% reqd.)
		601	UK	620	690-850	(Min 20% regd.)	HT780	80		685	780	(Min 20% reqd.)
	RQT	701	UK I	690	790-930		RQT	601	UK	620	690-850	(Min 20% reqd.)
						(Min 20% reqd.)	RQT	701		690	790-930	(Min 20% reqd.)
	HPS	485W	USA	485	-	(Min 20% reqd.)	HPS	485W	USA	485	-	(Min 20% reqd.)
	ASTM A913	70		485	620	16%	ASTM A913	70		485	620	16%
	ASTM A514	100		690	760 – 895	18%	ASTM A514	100		690	760 – 895	18%
	S500Q		Europe	440 - 500	540 – 590	(Min 20% reqd.)	S500C		Europe	440 - 500	540 - 590	Refers to
	S550Q			490 - 550	590 - 640	(Min 20% reqd.)	S5500			490 - 550	590 - 640	Clause 3.1.2
	S620Q			560 - 620	650 - 700	(Min 20% reqd.)	S6200			560 - 620	650 - 700	
	S690Q			630 - 690	710 - 770	(Min 20% reqd.)	S690C			630 - 690	710 - 770	
	Note: The minimum elongation limit is 15% for all steel.											
). Table D4 ¹²⁰	Table D4	Varioue	normally use	ed bolt strength	•		Table D4	Various no	mally used	bolt strengths		
	Bolt sour grade		Design shear stre p _q (N/mm ²)	Design	Design tensile stress p _y (N/mm ²)	Ultimate tensile strength p _u (N/mm ²)	Bolt source and grade	Design streng (N/mm	h <i>p</i> q l) s	Design bearing strength <i>p</i> ₅ N/mm²)	Design yield strength p _y (N/mm ²)	Minimum tensile strength (N/mm²)
	ISO 4.6		160	460	240	400						
	ISO 8.8		375	1000	560	800	ISO 4.6	1	60	460	240	400
	ISO 10.9		400	1300	700	1000	ISO 6.8	2	40	900	440	600
				1	1	11	ISO 8.8	3	75	1000	560	800
							ISO 10.	4	00	1300	700	1000
							ISO 12.		80	1600	840	1200

 ¹¹⁹ Revision of elongation for source of steel from Europe; Deletion of minimum elongation limit.
 ¹²⁰ Addition of bolt grade ISO 6.8 and 12.9.