

YOUR REF 來函檔號:

OUR REF 本署檔號:

(10) in BD GR/1-50/76(VI)

FAX 圖文傳真: TEL 電話: 2845 1585 2626 1398

www.bd.gov.hk

To: All Authorized Persons

Registered Structural Engineers
Registered Geotechnical Engineers
Registered Inspectors
Registered General Building Contractors
Registered Specialist Contractors
Registered Minor Works Contractors

24 November 2020

Dear Sir/Madam,

Amendments to Code of Practice for Structural Use of Concrete 2013

The Technical Committee (TC) on the Code of Practice for Structural Use of Concrete 2013 (the Code) set up by the Buildings Department (BD) regularly collects views and feedback received from the practioners and the stakeholders arising from the use of the Code, and reviews the contents thereof for recommending the necessary update.

- 2. Having considered the TC's recommendations, certain amendments to the Code (as detailed at Annex) are promulgated with immediate effect from the date of this letter. The amendments have been uploaded to BD website www.bd.gov.hk under the "Code and design manuals" page of the "Resources" section.
- 3. The major amendments include:
 - (a) newly added clause 3.3 of the Code design requirements for the use of Grade 500A welded fabric;
 - (b) table 9.1 and clauses 9.3.1.1 and 9.4.2 of the Code revision of the design requirements for minimum percentage of reinforcement for elements with different concrete strengths; and
 - (c) clause 9.4.1 of the Code revision of the design requirements for pure cantilevered slab.

Yours faithfully,

(HO Hon-kit, Humphrey) Assistant Director/New Buildings 2 for Building Authority

Amendments to the Code of Practice for Structural Use of Concrete 2013 (November 2020)

Amendments to the Code of Practice for Structural Use of Concrete 2013

Item	Item Current version		nt version			Amendments
1. Contents	3.2	Reinforcing steel		3.2	Reinfo	orcing steel
		3.2.1 General			3.2.1	General
		3.2.2 Characteristic	c strength		3.2.2	Characteristic strength
		3.2.3 Strength clas	ses		3.2.3	Strength classes
		3.2.4 Elastic modu	lus		3.2.4	Elastic modulus
		3.2.5 Physical prop	perties		3.2.5	Physical properties
		3.2.6 Stress-strain	relationships for design		3.2.6	Stress-strain relationships for design
		3.2.7 Weldability			3.2.7	Weldability
		3.2.8 Mechanical of	couplers		3.2.8	Mechanical couplers
	3.3	Prestressing tendons		3.3	Weld	ed fabric
		3.3.1 General			3.3.1	General
		3.3.2 Characteristic	c strength		3.3.2	Materials, Fabrication, Sampling and
		3.3.3 Ductility				Testing
		3.3.4 Physical prop	perties		3.3.3	Additional requirements for Grade 500A
		3.3.5 Stress-strain	relationships for design			welded fabric
	3.4	Prestressing devices				
		3.4.1 Anchorages a	and couplers	3.4	Prestr	ressing tendons
	3.5	New Materials			3.4.1	General
		3.5.1 General			3.4.2	Characteristic strength

Item	Current version	Amendments
	3.5.2 Acceptance requirements 3.6 Design strength at elevated temperatures	3.4.3 Ductility 3.4.4 Physical properties 3.4.5 Stress-strain relationships for design 3.5 Prestressing devices 3.5.1 Anchorages and couplers 3.6.1 General 3.6.2 Acceptance requirements 3.7 Design strength at elevated temperatures
2. Clause 1.4.1 New general term ¹	ultimate limit state (ULS) that state associated with collapse or with other similar forms of structural failure (see clause 2.2.2.1)	ultimate limit state (ULS) that state associated with collapse or with other similar forms of structural failure (see clause 2.2.2.1) welded fabric arrangement of longitudinal and transverse bars of the same or different nominal

¹ The term "welded fabric" is defined. The terms "fabric" and "welded mesh fabrics" are replaced by "welded fabric" correspondingly.

	Item	Current version	Amendments
3.	Clause 1.5 New symbol ²	z lever arm $\gamma_{\rm f}$ partial safety factor for load	substantially at right angles to each other that are welded together at all points of intersection by electrical resistance welding in a factory using automatic machines (see clause 3.3) z lever arm α_{min} modification factor for minimum steel ratio for tensile reinforcement and transverse reinforcement $\gamma_{\rm f}$ partial safety factor for load
4.	Clause 2.2.3.2 1 st paragraph ³	The structural integrity of the building and its members should be checked for the effects of the design fire. In the checking, the strength of concrete and reinforcement should be based on the values given in clause 3.6, and the partial safety factors for loads and materials should be based on the values given in clauses 2.3.2.7 and 2.4.3.2 respectively.	The structural integrity of the building and its members should be checked for the effects of the design fire. In the checking, the strength of concrete and reinforcement should be based on the values given in clause 3. 7, and the partial safety factors for loads and materials should be based on the values given in clauses 2.3.2.7 and 2.4.3.2 respectively.

Modification factor for minimum steel ratio of tensile reinforcement and transverse reinforcement is introduced to take into account different concrete strengths.
 Consequential re-numbering of clause due to insertion of new clause 3.3 for welded fabric.

Item	Current version	Amendments
5. Clause 3.3 New clause ^{1 & 3}	 3.3 PRESTRESSING TENDONS 3.3.1 General This section applies to wires, bars and strands complying with acceptable standards, and used as prestressing tendons in concrete structures. 3.3.2 Characteristic strength The characteristic strength of a prestressing tendon, unless stated otherwise, means the ultimate strength below which 5% of all possible test results would be 	3.3 WELDED FABRIC 3.3.1 General Unless otherwise stated, the requirements for steel reinforcing bars apply to welded fabric. In each single panel of welded fabric, the bars should be of the same characteristics (type and grade). Bars of different diameters could be used in different directions but only one nominal diameter should be used in each direction.
	expected to fall. 3.3.3 Ductility The products shall have adequate ductility in elongation and bending. 3.3.4 Physical properties The following mean values may be used: (a) density 7850 kg/m³; and (b) coefficient of thermal expansion 12x10 ⁻⁶ /°C. 3.3.5 Stress-strain relationships for design	The material properties of Grade 500A steel reinforcing bars used for manufacturing the welded fabric should comply with BS 4449 while those of Grade 500B and Grade 500C steel reinforcing bars used for manufacturing the welded fabric should comply with CS2. The fabrication, sampling and testing other than material properties for all welded fabric, i.e. Grade 500A, 500B and 500C should comply with BS 4483. Determination of fatigue properties of steel reinforcing bars used for manufacturing the welded fabric is an optional

The short-term design stress-strain curve for prestressing tendons is given in figure 3.10 below, with $\gamma_{\rm m}$ having the relevant value. For sustained loading, appropriate allowance for relaxation should be made. Stress (tensile) As recommended in the acceptable standards Note: $f_{\rm pu}$ is in N/mm² The short-term design stress-strain curve for prestressing tendons is given in figure 3.10 below, which the welded fabrics are to be cast. 3.3.3 Additional requirements for Grade 500A welded fabric Grade 500A welded fabric should be manufactured by steel reinforcing bars with diameters from 8 mm to 16 mm. In all conditions, moment redistribution is not allowed. In addition, Grade 500A welded fabric should only be used in the following locations: (i) sections not contributing to the lateral load resisting system: (ii) sections other than column strips of flat slab system and similar slab structures providing structural ties for robustness against disproportionate collapse; and (iii) slab sections with low bending stress, i.e.	Item	Current version	Amendments
Figure 3.10 - Short-term design stress-strain curve for prestressing tendons		prestressing tendons is given in figure 3.10 below, with $\gamma_{\rm m}$ having the relevant value. For sustained loading, appropriate allowance for relaxation should be made. Stress (tensile) As recommended in the acceptable standards Note: $f_{\rm pu}$ is in N/mm² Figure 3.10 - Short-term design stress-strain curve for prestressing	which the welded fabrics are to be cast. 3.3.3 Additional requirements for Grade 500A welded fabric Grade 500A welded fabric should be manufactured by steel reinforcing bars with diameters from 8 mm to 16 mm. In all conditions, moment redistribution is not allowed. In addition, Grade 500A welded fabric should only be used in the following locations: (a) Slab (i) sections not contributing to the lateral load resisting system; (ii) sections other than column strips of flat slab system and similar slab structures providing structural ties for robustness against disproportionate collapse; and

Item	Current version	Amendments
		$K = \frac{M}{f_{cu}bd^2} \le 0.156 \qquad for f_{cu} \le 45 N/mm^2$ $\le 0.120 \qquad for 45 < f_{cu} \le 70 N/mm^2$ (b) Wall Outside confined boundary elements as defined in clause 9.9.3.2.
		 3. 4 PRESTRESSING TENDONS 3. 4.1 General This section applies to wires, bars and strands complying with acceptable standards, and used as prestressing tendons in concrete structures.
		3. 4.2 Characteristic strength The characteristic strength of a prestressing tendon, unless stated otherwise, means the ultimate strength below which 5% of all possible test results would be expected to fall.
		3. 4.3 Ductility

Item	Current version	Amendments
		The products shall have adequate ductility in
		elongation and bending.
		3. 4.4 Physical properties
		The following mean values may be used:
		(a) density 7850 kg/m ³ ; and
		(b) coefficient of thermal expansion 12x10 ⁻⁶ /°C.
		3.4.5 Stress-strain relationships for design
		The short-term design stress-strain curve for
		prestressing tendons is given in figure 3.10 below,
		with $\gamma_{\rm m}$ having the relevant value. For sustained
		loading, appropriate allowance for relaxation should
		be made.

Item	Current version	Amendments
		Stress (tensile) As recommended in the acceptable standards 0.005 Strain Note: f_{pu} is in N/mm ² Figure 3.10 - Short-term design stress-strain curve for prestressing tendons
6. Clause 3.4 ³	3.4 PRESTRESSING DEVICES 3.4.1 Anchorages and couplers 3.4.1.1 General This section applies to anchoring devices	3. 5 PRESTRESSING DEVICES 3. 5.1 Anchorages and couplers 3. 5.1.1 General This section applies to anchoring devices
	(anchorages) and coupling devices (couplers) in post tensioned construction. All anchorages should comply with the acceptable standards.	

Item	Current version	Amendments		
	3.4.1.2 Mechanical properties Tendon-anchorage assemblies and tendon coupler assemblies shall have strength, elongation and fatigue characteristics sufficient to meet the basic requirements of section 2.	assemblies shall have strength, elongation and		
7. Clause 3.5 ³	3.5.1 General The requirements of this code of practice are not to be construed as prohibiting the use of new and alternative materials. 3.5.2 Acceptance requirements The properties of new materials must be adequately demonstrated to comply with the basic requirements of section 2. For this purpose sufficient information must be provided, including manufacturing data, testing and proposed quality controls, to allow independent third party evaluation of such compliance.	to be construed as prohibiting the use of new and alternative materials. 3. 6.2 Acceptance requirements The properties of new materials must be adequately demonstrated to comply with the basic requirements of section 2. For this purpose sufficient information must be provided, including manufacturing data, testing and proposed quality controls, to allow		

Item	Cu	urrent version		Amendments			
8. Clause 3.6 ³	3.6 DESIGN ST TEMPERATURES	TRENGTH A	T ELEVATED	3. 7 DESIGN TEMPERATURES	STRENGTH A	AT ELEVATED	
9. Clause 8.4.1 1 st paragraph ¹	Reinforcing bars, wires anchored that the bond concrete avoiding lo Transverse reinforceme	forces are safely	transmitted to the king or spalling.	anchored that the bond forces are safely transmitted to the			
10. Table 8.3 ¹	Bar type	Bars in tension	β Bars in compression	Bar type	Bars in tension	β Bars in compression	
	Plain bars Ribbed bars	0.28	0.35	Plain bars Ribbed bars	0.28	0.35	
	Fabric (see clause 8.4.6) Table 8.3 - Values of bond	0.65	0.81	Welded fabric (see clause 8.4.6)	0.65	0.81	
				Table 8.3 - Values of bor	nd coefficient β		

Item	Current version					Ame	endments			
11. Table 8.4 ¹		1								
		Type of	Reinfo	rcement ty	ypes			Reinfo	rcement ty	ypes
	Concrete Grade	anchorage length	f _y 250 N/mm ²	^f y 500 N/mm²		Concrete Grade	Type of anchorage	f _y	^f у 500 N/mm²	
			250 N/IIIII-	Ribbed	Fabric		length	250 N/mm²	Ribbed	Welded
	30	Tension	36	40	31					fabric
		Compression	29	32	25	30	Tension	36	40	31
	35	Tension	33	38	29		Compression	29	32	25
		Compression	27	30	23	35	Tension	33	38	29
	40	Tension	31	35	27		Compression	27	30	23
		Compression	25	28	22	40	Tension	31	35	27
	45	Tension	29	33	25		Compression	25	28	22
		Compression	24	26	20	45	Tension	29	33	25
	50	Tension	28	31	24		Compression	24	26	20
		Compression	22	25	19	50	Tension	28	31	24
	≥ 60	Tension	26	28	22		Compression	22	25	19
		Compression	20	23	18	≥ 60	Tension	26	28	22
	Table 8.4 - U	ltimate anchorage	bond lengths ($(l_{\mathbf{b}})$ as mul	tiples of bar		Compression	20	23	18
	diameter					Table 8.4 - Ul	timate anchorage	bond lengths ((l _b) as mul	tiples of bar
						diameter				

	Item	Current version	Amendments
12.	Clause 8.4.7 1 st paragraph ¹	8.4.7 Design ultimate anchorage bond stress for fabric The value of design ultimate anchorage bond stress given in clause 8.4.4 for fabric is applicable to fabric manufactured from bars or wires conforming to the acceptable standards. This is provided that: (a) the fabric is welded in a shear resistance manner conforming to the acceptable standards; and (b) the number of welded intersections within the anchorage length is at least equal to 4As req /As prov-	8.4.7 Design ultimate anchorage bond stress for welded fabric The value of design ultimate anchorage bond stress given in clause 8.4.4 for welded fabric is applicable to fabric manufactured from bars or wires conforming to the acceptable standards. This is provided that: (a) the welded fabric is welded in a shear resistance manner conforming to the acceptable standards; and (b) the number of welded intersections within the anchorage length is at least equal to $4A_s \operatorname{req}/A_s \operatorname{prov}$
13.	Clause 8.7.3.1 ¹	The minimum lap length for bar reinforcement should be not less than 15 times the bar diameter or 300 mm, whichever is greater, and for fabric reinforcement should not be less than 250 mm.	The minimum lap length for bar reinforcement should be not less than 15 times the bar diameter or 300 mm, whichever is greater, and for welded fabric should not be less than 250 mm.
14.	Clause 8.7.3.2 1 st paragraph ¹	The tension lap length should be at least equal to the design tension anchorage length (see clause 8.4.5) necessary to develop the required stress in the reinforcement. Lap lengths for unequal size bars (or wires in fabric) may be	The tension lap length should be at least equal to the design tension anchorage length (see clause 8.4.5) necessary to develop the required stress in the reinforcement. Lap lengths for unequal size bars (or wires in welded fabric) may

Item	Current version					Amendments				
	based upon the diameter of the smaller bar. The following provisions also apply:				be based upon the diameter of the smaller bar. The following provisions also apply:					
15. Clause 8.7.3.3 1 st paragraph ¹	than the d 8.4.5) neo reinforcen	ression lap length should lesign compression anchor cessary to develop the nent. Lap lengths for un may be based upon the sn	orage len required equal siz	agth (see l stress ee bars (o	clause in the r wires	than the constant than the constant that the con	pression lap length should design compression and cessary to develop the ment. Lap lengths for under fabric) may be base	norage le e require nequal si	ength (see ed stress ize bars (e clause in the or wires
16. Table 8.5 ¹		I					T	Ι		
	Concrete Grade	Type of lap length	Type of lap length Reinforcement types $f_{\mathbf{y}}$ $f_{\mathbf{y}}$ $f_{\mathbf{y}}$ $f_{\mathbf{y}}$ $f_{\mathbf{y}}$ $f_{\mathbf{y}}$ $f_{\mathbf{y}}$ $f_{\mathbf{y}}$			Concrete Type of lap length		f _y		cypes y y /mm²
	30	Tension and compression lap	N/mm²	Ribbed 40	Fabric 31			250 N/mm²	Ribbed	Welded fabric
	30	length $-l_0$ 1.4 x tension lap	50	56	44	30	Tension and compression lap length $-l_0$	36	40	31
		2.0 x tension lap	71	80	62		1.4 x tension lap	50	56	44
	35	Tension and compression lap ${\rm length} - l_{\rm O}$	33	38	29		2.0 x tension lap	71	80	62

Item	Current version						Amendmen	nts		
		1.4 x tension lap 2.0 x tension lap	46 66	52 75	40 57	35	Tension and compression lap length $-l_0$	33	38	29
	40	Tension and compression lap length – $l_{\rm O}$	31	35	27		1.4 x tension lap 2.0 x tension lap	46 66	52 75	40 57
		1.4 x tension lap 2.0 x tension lap	43 62	49 70	38 54	40	Tension and compression lap length $-I_0$	31	35	27
	45	Tension and compression lap length – $l_{\rm O}$	29	33	25		1.4 x tension lap 2.0 x tension lap	43 62	49 70	38 54
		1.4 x tension lap 2.0 x tension lap	41 58	47 66	35 50	45	Tension and compression lap length $-l_0$	29	33	25
	50	Tension and compression lap ${\rm length} - l_{\rm O}$	28	31	24		1.4 x tension lap 2.0 x tension lap	41 58	47 66	35 50
		1.4 x tension lap 2.0 x tension lap	39 55	44 62	34 48	50	Tension and compression lap length $-l_0$	28	31	24
	≥ 60	Tension and compression lap ${\rm length} - l_{\rm O}$	26	28	22		1.4 x tension lap 2.0 x tension lap	39 55	44 62	34 48
		1.4 x tension lap 2.0 x tension lap	36 51	40 56	31 44	≥ 60	Tension and compression lap length $-l_0$	26	28	22
							1.4 x tension lap 2.0 x tension lap	36 51	40 56	31 44

Item	Current version				Amendments			
	Notes: 1. The values are rounded up length derived from these calculated directly for each Table 8.5 - Ultimate lap length	values may diffe	Notes: 1. The values are rounded up to the nearest whole number and the length derived from these values may differ slightly from those calculated directly for each bar or wire size. Table 8.5 - Ultimate lap lengths as multiples of bar diameter					
17. Table 9.1 ²	Situation	Definition of percentage	Minimum f _Y = 250 N/mm ² (%)	percentage fy = 500 N/mm² (%)	Situation	Definition of percentage	Minimum f _Y = 250 N/mm ² (%)	percentage f _Y = 500 N/mm ² (%)
	Tension reinforcement Sections subjected mainly to pure tension Sections subjected to flexure: (i) flanged beams, web in	100 <i>A</i> _S / <i>A</i> _C	0.8	0.45	Tension reinforcement Sections subjected mainly to pure tension Sections subjected to flexure: (i) flanged beams, web in	100A _S /A _C	0.8 <mark>α_{min}</mark>	0.45 <mark>α_{min}</mark>
	tension: $b_{\text{W}}/b < 0.4$ $b_{\text{W}}/b \ge 0.4$	100 <i>A</i> _S / <i>b</i> _W <i>h</i> 100 <i>A</i> _S / <i>b</i> _W <i>h</i>	0.32 0.24	0.18 0.13	tension: $b_{\rm W}/b < 0.4$ $b_{\rm W}/b \ge 0.4$	100 <i>A</i> _S / <i>b</i> _W <i>h</i> 100 <i>A</i> _S / <i>b</i> _W <i>h</i>	0.32 <mark>\alpha_{min}</mark> 0.24\alpha_{min}	0.18 <mark>α_{min}</mark> 0.13 <mark>α_{min}</mark>

Item	Current version				Amendments			
						T		
	(ii) flanged beams, flange in				(ii) flanged beams, flange in			
	tension:	$100A_{S}/b_{W}h$	0.48	0.26	tension:	$100A_{\rm S}/b_{\rm W}h$	0.48 <mark>α_{min}</mark>	0.26 <mark>α_{min}</mark>
	T-beam	100 <i>A</i> _S / <i>b</i> _W <i>h</i>	0.36	0.20	T-beam	100A _S /b _W h	0.36 <mark>α_{min}</mark>	0.20 <mark>α_{min}</mark>
	L-beam				L-beam			
	(iii) rectangular section	100 <i>A</i> _S / <i>A</i> _C	0.24	0.13	(iii) rectangular section	100 <i>A</i> _S / <i>A</i> _C	0.24 <mark>α_{min}</mark>	$0.13 \frac{\alpha_{min}}{\alpha_{min}}$
	Compression reinforcement				Compression reinforcement			
	(where such reinforcement is				(where such reinforcement is			
	required for the ultimate limit				required for the ultimate limit			
	state)				state)			
	General rule	$100A_{\rm sc}/A_{\rm cc}$	0.4	0.4	General rule	100 <i>A</i> _{sc} / <i>A</i> _{cc}	0.4	0.4
	Simplified rules for particular				Simplified rules for particular			
	cases:	100 <i>A</i> _{sc} / <i>A</i> _c	0.2	0.2	cases:	100 <i>A</i> _{sc} / <i>A</i> _c	0.2	0.2
	(i) rectangular beam				(i) rectangular beam			
	(ii) flanged beam				(ii) flanged beam			
	flange in	$100A_{\rm sc}/bh_{\rm f}$	0.4	0.4	flange in	100 <i>A</i> _{sc} / <i>bh</i> _f	0.4	0.4
	compression	$100A_{\rm SC}/b_{\rm W}h$	0.2	0.2	compression	$100A_{sc}/b_{w}h$	0.2	0.2
	web in compression				web in compression			

Item	Current version	Amendments
	Transverse reinforcement in flanges of flanged beams (provided over full effective flange width near top surface to resist horizontal shear) 0.15	Transverse reinforcement in flanges of flanged beams $ (\text{provided over full effective} 100A_{\text{St}}/h_{\text{f}}l 0.15 \frac{\alpha_{\text{min}}}{\alpha_{\text{min}}} $ flange width near top surface to resist horizontal shear)
	Notes: 1. The minimum percentages of reinforcement should be increas where necessary to meet the ductility requirements given in clause. 9.9. Table 9.1 - Minimum percentages of reinforcement	
18. Clause 9.3.1.1(a) ²	The following minimum percentages of total longitudin reinforcement should be provided in each direction: (i) f _y = 250 N/mm ² : 0.24% of concrete cross-section area; and (ii) f _y = 500 N/mm ² : 0.13% of concrete cross-section area. Generally secondary transverse reinforcement of not lethan 20% of the principal reinforcement should be provided in one-way slabs. In areas near supports transverse.	reinforcement should be provided in each direction: (i) $f_y = 250 \text{ N/mm}^2$: 0.24% of concrete cross-sectional area; and (ii) $f_y = 500 \text{ N/mm}^2$: 0.13% of concrete cross-sectional area. For tension reinforcement, the minimum percentages of total longitudinal reinforcement should be multiplied by a

Item	Current version	Amendments
	reinforcement to principal top bars is not necessary where	Generally secondary transverse reinforcement of not less
	there is no transverse bending moment.	than 20% of the principal reinforcement should be provided
		in one-way slabs. In areas near supports transverse
		reinforcement to principal top bars is not necessary where
		there is no transverse bending moment.
19. Clause 9.4.1 ⁴	Wherever practicable, pure cantilevered slab arrangements	Instead of pure cantilevered slab arrangements, beam-and-
	should not be used for spans exceeding 750 mm, and beam-	slab arrangements should be used for spans exceeding
	and-slab arrangements should be used for spans exceeding	1200 mm. When these requirements cannot be complied
	1000 mm. When these requirements cannot be complied	with, more stringent control than those given in this Code
	with, more stringent control than those given in this Code	may be necessary.
	may be necessary.	A cantilevered structure should have such a thickness that
	A cantilevered structure should have such a thickness that	the following requirements and the requirements of clause
	the following requirements and the requirements of clause	7.3 are complied with:
	7.3 are complied with:	(a) 300 mm at the support of cantilevered beam;
	(a) 300 mm at the support of cantilevered beam;	(b) 110 mm for cantilevered slab with span not exceeding
	(b) 110 mm for cantilevered slab with span not exceeding	500 mm;
	500 mm;	(c) 125 mm for cantilevered slab with span greater than
	(c) 125 mm for cantilevered slab with span greater than	500 mm but not exceeding 750 mm;
	500 mm but not exceeding 750 mm;	(d) 150 mm for cantilevered slab with span greater than
		750 mm but not exceeding 1000 mm;

⁴ Requirements for cantilevered projecting structures are revised.

Item	Current version	Amendments
	(d) 150 mm for cantilevered slab with span exceeding 750	(e) 175 mm for cantilevered slab with span exceeding
	mm.	1000 mm but not exceeding 1200 mm.
	Cantilevered structures should be reinforced with ribbed	Cantilevered structures should be reinforced with ribbed
	steel reinforcing bars. Cantilevered slabs should have	steel reinforcing bars. Cantilevered slabs should have
	reinforcing bars in both faces and in both directions.	reinforcing bars in both faces and in both directions.
	Cantilevered structures exposed to weathering should be	Cantilevered structures exposed to weathering should be
	provided with:	provided with:
	(e) means to prevent accumulation of water;	(f) means to prevent accumulation of water;
	(f) effective waterproofing;	(g)effective waterproofing;
	(g) adequate fall which should not be less than 1:75; and	(h) adequate fall which should not be less than 1:75; and
	(h) an effective drainage system.	(i) an effective drainage system.
	Cantilevered slabs exposed to weathering should be	Cantilevered slabs exposed to weathering should be
	designed for :	designed for :
	(i) exposure condition 2 or higher if appropriate;	(i) exposure condition 2 or higher if appropriate;
	(j) estimated maximum crack width not exceeding	(k) estimated maximum crack width not exceeding
	0.1 mm under serviceability limit state or the stress of	0.1 mm under serviceability limit state or the stress of
	deformed high yield steel reinforcing bars used should	deformed high yield steel reinforcing bars used should
	not exceed 100 N/mm ² when checking the flexural	not exceed 100 N/mm ² when checking the flexural
	tension under the working load condition.	tension under the working load condition.
20. Clause 9.4.2	The minimum percentage of top tension longitudinal	The minimum percentage of top tension longitudinal
1 st paragraph ²	reinforcement based on the gross cross-sectional concrete	reinforcement based on the gross cross-sectional concrete

Item	Current version	Amendments
	area should be 0.25% for all reinforcement grades. The minimum diameter of this principal reinforcement should be 10 mm.	area should be 0.25% for all reinforcement grades but not less than that stipulated in clause 9.3.1.1(a). The minimum diameter of this principal reinforcement should be 10 mm.
21. Clause 9.5.2.1 1 st paragraph ¹	The diameter of the transverse reinforcement (links, loops or helical spiral reinforcement) should not be less than 6 mm or ¹ / ₄ the diameter of the largest longitudinal bar, whichever is the greater. The diameter of wires or welded mesh fabric when used for transverse reinforcement should not be less than 5 mm.	The diameter of the transverse reinforcement (links, loops or helical spiral reinforcement) should not be less than 6 mm or ¹ / ₄ the diameter of the largest longitudinal bar, whichever is the greater. The diameter of wires or welded fabric when used for transverse reinforcement should not be less than 5 mm.
22. Clause 11.7.5.2(b) ¹	bars or welded mesh fabrics;	bars or welded fabrics;
23. Clause 12.1.8.2 ³	Characteristic strength of concrete The specified characteristic strengths of reinforcement are given in clause 3.2 and those for prestressing tendons are given in clause 3.3.	Characteristic strength of concrete The specified characteristic strengths of reinforcement are given in clause 3.2 and those for prestressing tendons are given in clause 3. 4.