RTTV Summary Sheet
Notes:
ER = External Reflectance
SC = Shading Coefficient
VLT = Visible Light Transmittance
Window and skylight data should represent the major proportion of its use in the development.

| Address: Redevelopment of Tai Po Town Lot No.233, Nos.2, 4 and 6, Wai Yi Street, Tai Po, N.T. | | BD Ref. No. BD2/9046/18 |
| :--- | :--- | :--- | :--- |
| Building Type: | Residential | |
| RTTV calculated by | \square 1. Registered Professional Engineers | |
| | $\square^{2 .}$ Architect | |
| | \square 3. Others, please specify: | |
| | 10 | |

Table 1

Deemed to Satisfy RTTV ${ }_{\text {Wall }}$								
Facade Orientation Facing								
Average Absorptivity								
Average Window to Wall Ratio								
Shading Coefficient of Glazing								
Average Shading Coefficient of Facade								
Visible Light Transmittance	\%	\%	\%	\%	\%	\%	\%	\%
External Reflectance	\%	\%	\%	\%	\%	\%	\%	\%

Table 2

WElevations	Gross W												
-12/F	(11.37) \times	2.80	\times	10	=	11.37	\times	280	\times	10	=	318.36
R/F to UR/F	7.20)	5.75	\times	1	=	7.20	\times	5.75	\times	1	=	41.40

RFF to URFF
(6.38
$12.14 \times 2.80 \times 10=339.92 \mathrm{~m}^{2}$
$638 \times 5.75 \times 1=3.69 \mathrm{~m}^{2}$

E日evations Gross Glazing Area $=$ Total Length of Glazing \times Glazing Height \times No. of Storeys 2/F-12/F (Mindow 8) (0.35

RFF to TRFF (0.00

NElevations Gross Glazing Area $=$ Total Length of Glazing \times Glazing Height \times No. of Storeys 2/F 12IF (Mndow 4) 2/F 12/F Mindow) (2.65 21F 12/F MUdow 4) (0.65 2/F 12/F(Mindow5) (0.80 2/F 12F (Mindow 6) (1.25 R/F to TR/F (0.00

WElevations Gross Glazing Area $=$ Total Length of Glazing \times Glazing Height \times No. of Storeys 2/F-12/F (Mindow 8) (0
RIF to TR/F
(0.00

S日levations Gross Glazing Area $=$ Total Length of Glazing \times Glazing Height \times No. of Storeys 2F 12F (Mindow 9) (0.85
2/F 12F (Mindow 10) (0.65
2/F 12F (Mindow 2) (0.60
R/F to TR/F
$\times 1.15 \times 10=0.35 \times 1.15 \times 10=4.03 \mathrm{~m}^{2}$
) $\times 5.75 \times 1=$
$0.35 \times 1.15 \times 10=4.03 \mathrm{~m}^{2}$
$0.00 \times 5.75 \times 1=0.00 \mathrm{~m}^{2}$

Gross Glazing Areas $\quad 4.03$ m²

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014

Form RITV (Wall) 1 - Calculation of RITVwall of E Facade

Sheet No. Building Address	6		BD Ref No.	BD 290046/18
	REDEVELOPMENT OF TAI PO TOWN LOT NO.233, NOS. 2,4 AND 6 WAI YI STREET, TAI PO, N.T.			
Facade Orientation Facing	E		Wall Area (A0) =	357.24
Window to Wall Ratio (WWR)	0.01		on Factor (Gw) =	1.072
Part 1-Calculation of Heat Conduction through Opaque Walls				
Components / Details		Code No.		
Description	Units	E-C	E-C	E-C
External Frish Material		External tiles	0	0
Conductivity	W/mK	1.50	1.50	1.50
Thickness	m	0.025	0.000	0.000
Average Absorptivity	(a)	0.78	0.78	0.78
Intermediate component		Concrete	0.00	0.00
Conductivity	W/mk	2.16	2.16	2.16
Thickness	m	0.15	0.00	0.00
Intermediate component				
Conductivity	W/mK			
Thickness	m			
Intermediate component				
Conductivity	W/mk			
Thickness	m			
Intermediate component				
Conductivity	W/mk			
Thickness	m			
Internal Fnish Material		Gypsum plaster	0.00	0.00
Conductivity	W/mK	0.38	0.38	0.38
Thickness	m	0.03	0.00	0.00
U-value of Opaque Area (Uwi)	W/m²K	3.17	6.10	6.10
Opaque Wall Area (Awi)	m^{2}	353.22	0.00	0.00
Heat Conduction $=3.57$ (Awi/Ao) Uwi awi Gw		9.30	0.00	0.00

Part 2-Calculation of Heat Conduction through Glazing										
Components / Details		Code No.								
Description	Units	E-F	E-w							
Glazing Type		Clear glass								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	4.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U-value of Glazing (Ufi)	W/mK	3.9								
Heat Conduction $=0.64$ (Afi/Ao) Uf Gw		0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Heat Conduction through Glazing $=0.64$ (Afi/Ao) Ufi $G w \quad$ where $i=1,2, \ldots, n$

$$
=0.03 \mathrm{~W} / \mathrm{m}^{2}
$$

Part 3-Calculation of Solar Radiation through Glazing										
Components / Details		Code No.								
Description	Units	E-F	E-W							
Glazing Type		Clear glass								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	4.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Shading Coefficient of Glazing (SCf)		0.69								
Visible Light Transmittance (VLT)	\%	71								
External Reflectance (ER)	\%	9								
External Shading Militilier (ESC)		1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Solar Radiation $=41.75$ (Afi/Ao)(SCfi)(ESCwi)Gw		0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Solar Raciation through Glazing $=41.75($ Afi/Ao)(SCfi) $($ ESCwi) Gw where $i=1,2, \ldots, n$

$$
=0.35 \mathrm{Wm}^{2}
$$

Summary of RIIV at EĐevation

$$
\begin{aligned}
& =9.30 \quad+ \\
& =9.67 \mathrm{Wm}^{2}
\end{aligned}
$$

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014

Form RITV (Wall) 1 - Calculation of RITVuall of N Facade

Sheet No. Building Address	\qquad			
Facade Orientaion Facing	N			381.62
Window to Wall Ratio (WWR)	0.76	Wall Orientation Factor (Gw) =		0.79
Part 1-Calculation of Heat Conduction through Opaque Walls				
Components / Details		Code No.		
Description	Units	N-C	N -	N-C
External Finish Material		External tiles	0	0
Conductivity	W/mk	1.50	1.50	1.50
Thickness	m	0.025	0.000	0.000
Average Absorptivity	(a)	0.61	0.61	0.61
Intermediate component		Concrete	0.00	0.00
Conductivity	W/mk	2.16	2.16	2.16
Thickness	m	0.15	0.00	0.00
Intermediate component				
Conductivity	W/mk			
Thickness	m			
Intermediate component				
Conductivity	W/mK			
Thickness	m			
Intermediate component				
Conductivity	W/mk			
Thickness	m			
Intemal Finish Material		Gypsum plaster	0.00	0.00
Conductivity	W/mK	0.38	0.38	0.38
Thickness	m	0.03	0.00	0.00
U-value of Opaque Area (Uwi)	W/m²K	3.17	6.10	6.10
Opaque Wall Area (Awi)	m^{2}	91.90	0.00	0.00
Heat Conduction = 3.57(Awi/Ao) Uwi awi Gw		132	0.00	0.00

Heat Conduction through Opaque Walls $=3.57$ (Awi/Ao) Uwi awi Gw where $\mathrm{i}=1,2, \ldots, \mathrm{n}$
\qquad $\mathrm{W} / \mathrm{m}^{2}$

Components / Details		Code No.								
Description	Units	N-F1	N-WI	N-W2	N-W3	N-W4	N-W9	N-W10	N-W11	N-W12
Glazing Type		Clear glass								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	289.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U-value of Glazing (Ufi)	W/m²K	3.9								
Heat Conduction $=0.64$ (Afi/A) Uf Gw		1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Heat Conduction through Glazing $=0.64$ (Afi/Ao) Ufi Gw where $i=1,2, \ldots, \mathrm{n}$

$$
=1.50 \mathrm{~W} / \mathrm{m}^{2}
$$

Components / Details		Code No.								
Description	Units	N-F1	N-WI	N-W2	N-W3	N-W4	N-W9	N-W10	N-W11	N-W12
Glazing Type		Clear glass								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	289.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Shading Coefficient of Glazing (SCf)		0.69								
Visible Light Transmittance (VLT)	\%	71								
External Reflectance (ER)	\%	9								
External Shading Militilier (ESC)		1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Solar Radiation $=41.75$ (AfilAo)(SCfi)(ESCwi)Gw		17.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Solar Radiation through Glazing $=41.75$ (Afi/Ao)(SCfi)(ESCwi)Gw where i= $1,2, \ldots, n$
$=17.28 \mathrm{Wm}^{2}$
Summary of RTTV at North Elevations
$=1.32+$
$=20.09 \mathrm{~W} \mathrm{~mm}^{2}$

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014

Form RITV (Wall) 1 - Calculation of RITV wall of WFacade

Heat Conduction through Opaque Walls $=3.57$ (Awi/Ao) Uwi awi $G w$ where $i=1,2, \ldots, n$
\qquad $\mathrm{W} / \mathrm{m}^{2}$

Part 2-Calculation of Heat Conduction through Glazing										
Components / Details		Code No.								
Description	Units	W-F1	w-w5	w-w6	w-w7	w-ws	W-W15	W-W16	w-w17	W-W18
Glazing Type		Clear glass								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U-value of Glazing (Ufi)	W/m²K	3.9								
Heat Conduction $=0.64$ (Afi/A) Uf Gw		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Heat Conduction through Glazing $=0.64$ (Afi/Ao) Ufi Gw where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

$$
=0.00 \mathrm{~W} / \mathrm{m}^{2}
$$

Part 3-Calculation of Solar Raciation through Glazing										
Components / Details		Code No.								
Description	Units	W-F1	w-w5	w-w6	w-w7	w-ws	W-W15	W-W16	w-W17	w-W18
Glazing Type		Clear glass								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	0.00								
Shading Coefficient of Glazing (SCf)		0.69								
Visible Light Transmittance (VLT)	\%	71								
External Reflectance (ER)	\%	9								
External Shading Militilier (ESC)		1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Solar Radiation $=41.75$ (Afi/Ao)(SCfi)	SCwi)Gw	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Solar Radiation through Glazing $=41.75$ (Afi/Ao)(SCfi)(ESCwi)Gw where $i=1,2, \ldots, \mathrm{n}$
$=\underline{0.00} \mathrm{~W}^{2} \mathrm{~m}^{2}$
Summary of RTIV at wĐevations
$=9.97$
0.00
0.00
$=9.97 \mathrm{~W}^{2}$

SElevations

Glazing Areas Shaded by Overhang Fin \& Built-Fin (Projection on Right) Glazing Area $=$ Length of Glazing \times Glazing Height \times No. of Storeys
2F-12F (Window 8)

Glazing Areas
Shaded by Overhang Fin \& Buill-Fin (Projection on Right \& Left)
Glazing Area $=$ Length of Glazing \times Glazing Height \times No. of Storeys
2F-12F (Window 8)

	1	0.00					\|x	0.00	\times	10	
OPF	=	0.00	1	1.15	=	0.00				ESC1	
SPF_R	=	0.00	"	20	+)	0.00		ESC_R	
SPF_L	$=$	0.00	1	0.40	+)	0.00		ESC_L	
ESC2	=	1.00	-	II	1.	ESC_R)	+	1.	ESC_L	
	=	1.00	-	II	1.	0)	+	1.	0	
ESC	$=$	0.000		x		. 000					

Glazing Areas
2F-12F (Window 8)

Glazing Areas
2F-12F (Window 8)

Glazing Areas
2F-12F (Window 8)

Shaded by Overhang Fin \& Built-Fin (Projection on Right \& Leff)
2F-12F((Window 8)
Glazing Area $=$ Lergh

	(0.00)	0.00	x	10
OPF	$=$	0.00	1	1.15	$=$	0.00				ESC1
SPF_R	=	0.00	1	0.40	+		=	0.00		ESC_R
SPF_L	=	0.00	"	0.40	+)=	0.00		ESC_L
ESC2	=	1.00		[1	1.	ESC_R)	+	1.	ESC_L
	=	1.00	-	II	1.	0)	+	1.	0
ESC	=	0.000		x		. 000				

Shaded by Overhang Fin \& Built-Fin (Projection on Right \& Leff)
Glazing Area $=$ Length of Glazing \times Glazing Height \times No. of Storeys

$$
\begin{aligned}
\text { OPF } & = \\
\text { SPF_R } & = \\
\text { SPFL } & = \\
\text { ESC2 } & = \\
& = \\
\text { ECS } & =
\end{aligned}
$$

Window to Wall Ratio (WWR)

Shaded by Overhang Fin \& Built-Fin (Projection on Right \& Left) Glazing Area $=$ Length of Glazing \times Glazing Height \times No. of Storey

$$
\mathrm{s}, \quad=0.00 \mathrm{~m}^{2}
$$

		0.00					\|x	0.00	\times	10	
OPF	=	0.00	1	1.15	$=$	0.00				ESC1	=
SPF_R	=	0.00	/	0.40	+)=	0.00		ESC_R	
SPF_L	=	0.00	"	0.40	+)=	0.00		ESC_L	=
ESC2	=	1.00		[1.	ESC_R)	+	1.	ESC_L)]
	=	1.00	-	II	1.	0.000)	+	1.	\bigcirc	1]
ESC	=	0.000		x		1.000					

$$
0.00 \mathrm{~m}^{2}
$$

Shaded by Overhang Fin \& Built-Fin (Projection on Left)
Glazing Area $=$ Length of Glazing \times Glazing Height \times No. of Storeys

$$
\begin{array}{rllllllll}
& (0.00 & & & & & 0.00 & \times 10 & = \\
\text { OPF } & =0.00 & 1.15 & = & 0.00 & & & \text { ESC1 } & = \\
\text { SPF }= & 0.00 & 11 & 0.40 & + &)= & 0.00 & & \text { ESC2 }
\end{array}=
$$

Shaded by Overhang Fin \& Built-Fin (Projection on Lefft)
Glazing Area $=$ Length of Glazing \times Glazing Height \times No. of Storeys
0.000
$\mathrm{s}, \quad=0.00 \mathrm{~m}^{2}$
$0.00 \mathrm{~m}^{2}$ 0.000
$\mathrm{s})=0.00$ $0.00 \mathrm{~m}^{2}$ 0.000

Glazing Area
2F - 12F (Window 8)

$$
=
$$

ESC_R =

$$
\begin{aligned}
& \text { ESC_L }= \\
& \text { ESC_L I] }
\end{aligned}
$$

$$
\begin{array}{rrrr}
1- & \text { ESC_L } \\
\text { 1. } & 0 & 11
\end{array}
$$

$$
\begin{gathered}
= \\
0.000
\end{gathered}
$$

SElevations
Breakdown of Opaque Wall Areas
RC Wall Areas
RC Column Areas
2/F-12/F
2/F-12/F
$362.53 \mathrm{~m}^{2}$
Opaque Wall Areas at

$$
\begin{aligned}
& (\mathrm{s}-\mathrm{c})=362.53 \mathrm{~m}^{2} \\
& (\mathrm{~s}-\mathrm{c}) \\
& 0.00 \mathrm{~m}^{2}
\end{aligned}=0.00 \mathrm{~m}^{2} .
$$

$$
\left(\mathrm{sec} \mathrm{C}_{0.00 \mathrm{~m}^{2}}=0.00 \mathrm{~m}^{2}\right.
$$

Wall Orientation Factor $\quad \mathrm{Gw}_{\mathrm{w}}=0.975 \quad$ (Refer to Table 9)

Average Absorptivity (a) of the External Opaque Wall at SElevations

External Wall Material (Colour/Finish)	\% of wallroof area	
Tile (matt) Dark grey	100\%	0.9

'U' value of Opaque Wall Areas
Where Ri Surface ifin ressistance of in iemal surface (Reteft to Table 2)
Surface film ressistance of exeemal surface (Refertio Tolale 2)
Ra Airspace resistance (Réét to Table 3)
Thickess of fuiliding materials
Themal oconductivity of buididng materials R(Refert To Table 1)

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014

Form RITV (Wall) 1 - Calculation of RITV wall of S Facade

Sheet No.	$\frac{12}{\text { REDEVELOPMENT OF TAI PO }}$		BD Ref No.	BD 29046/18
Building Address	REDEVELOPMENT OF TAI PO TOWN LOT NO.233, NOS. 2,4 AND 6 WAI YISTREET, TAI PO, N.T.			
Facade Orientation Facing	S		Wall Area (A0) =	376.61
Window to Wall Ratio (WWR)	0.04		on Factor (Gw) =	0.975
Part 1-Calculation of Heat Conduction through Opaque Walls				
Components / Details		Code No.		
Description	Units	s-c	s-c	s-c
External Finish Material		External tiles	0	0
Conductivity	W/mk	1.50	1.50	1.50
Thickness	m	0.025	0.000	0.000
Average Absorptivity	(a)	0.90	0.90	0.90
Intermediate component		Concrete	0.00	0.00
Conductivity	W/mK	2.16	2.16	2.16
Thickness	m	0.15	0.00	0.00
Intermediate component				
Conductivity	W/mK			
Thickness	m			
Intermediate component				
Conductivity	W/mK			
Thickness	m			
Intermediate component				
Conductivity	W/mK			
Thickness	m			
Internal Finish Material		Gypsum plaster	0.00	0.00
Conductivity	W/mK	0.38	0.38	0.38
Thickness	m	0.03	0.00	0.00
U-value of Opaque Area (Uwi)	W/m²K	3.17	6.10	6.10
Opaque Wall Area (Awi)	m^{2}	362.53	0.00	0.00
Heat Conduction = 3.57(Awi/Ao) Uwi awi Gw		9.55	0.00	0.00

Heat Conduction through Opaque Walls $=3.57$ (AwiAAo) Uwi awi Gw where i $=1,2, \ldots, \mathrm{n}$
\qquad $\mathrm{W} / \mathrm{m}^{2}$

Part 2-Calculation of Heat Conduction through Glazing										
Components / Details		Code No.								
Description	Units	sFl	s-w7	s-ws	s-w9	s-w10	s-W15	s-w16	s-w17	s-w18
Glazing Type		Clear Glas								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	14.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
U-value of Glazing (Ufi)	W/m²K	3.9								
Heat Conduction $=0.64$ (Afi/Ao) Uf Gw		0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Heat Conduction through Glazing $=0.64$ (Afi/Ao) Ufi Gw where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

$$
=0.09 \mathrm{~W} / \mathrm{m}^{2}
$$

Components / Details						Code No.				
Description	Units	SFF1	s-w7	s-ws	s-w9	swno	sw15	s-W16	s.wn7	s-w18
Glazing Type		Clear Glas								
Thickness	m	0.006								
Glazing Area (Afi)	m^{2}	14.08								
Shading Coefficient of Glazing (SCf)		0.69								
Visible Light Transmittance (VLT)	\%	71								
External Reflectance (ER)	\%	9								
External Shading Militilier (ESC)		1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Solar Radiation $=41.75$ (Afi/Ao)(SCfi)(ESCwi)Gw		105	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Solar Radiation through Glazing $=41.75$ (Afi/Ao) (SCfi) (ESCwi)Gw where $i=1,2, \ldots, n$
$=105 \mathrm{Wm}^{2}$
Summary of RTTV at S Elevations
$=9.55$
0.09
1.05
$=10.69 \mathrm{~W}^{2} \mathrm{~m}^{2}$

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014 Form RITV (Wall) 2 - Summary of Overall RITV wall of Building

Sheet No. Building Address

13
BD Ref No. \qquad REDEVELOPMENT OF TAI PO TOWN LOT NO.233, NOS. 2,4 AND 6 WAI YI STREET, TAI PO, N.T.

Overall Gross Wall Area [a] $1475.22 \mathrm{~m}^{2}$

Facade Orientation Facing	Gross Wall Area $\left(m^{2}\right)$	Heat Conduction through Opaque Walls ($\mathrm{W} / \mathrm{m}^{2}$)	Heat Conduction through Glazing ($\mathrm{W} / \mathrm{m}^{2}$)	Solar Radiation through Glazing ($\mathrm{W} / \mathrm{m}^{2}$)	RITVuall at Each Facade ($\mathrm{W} / \mathrm{m}^{2}$)	Area-veighted RITVwall ($\mathrm{W} / \mathrm{m}^{2}$)
	[b]	[c]	[d]	[e]	$[f]=[\mathrm{c}]+[\mathrm{c}]+[\mathrm{e}]$	$[g]=[f] \times[\mathrm{b}] / \mathrm{a}]$
East	357.24	9.30	0.03	0.35	9.67	2.34
North	381.62	1.32	1.50	17.28	20.09	5.20
West	359.76	9.97	0.00	0.00	9.97	2.43
South	376.61	9.55	0.09	1.05	10.69	2.73
					Overall RTTVwall =	12.70

\qquad

Gross Roof Areas

Opaque Walls + Skylight Areas) (Aro) at Roof
Skylight Areas al Roof

Breakdown of Skylight Areas
Skylight Areas Unshaded
)
$=86.41 \mathrm{~m}^{2}$
Roof Orientation Factor
Gs
2.16
(Refer to Table 9)
$=0.00 \mathrm{~m}^{2}$
Average Absorptivity (a) of the External Opaque Wall at
Roof

External Roof Material (Colour/Finish)	\% of roof area	a Absorptivity (Refer to Table 5)
Tile (matt) Dark grey	100%	0.9
		0.9

Average Absorptivity
0.9

'U' value of Opaque Roof Areas

$U=1 /\left(R i+x_{1} / k_{1}+x_{2} / k_{2}+\ldots+x_{1} / k_{1}+R\right.$
where $\mathrm{Ri} \quad$ Surface film resistance of internal surface (Refer to Table 2
Ro Surface film resistance of external surface (Refer to Table 2)
Ra Air space resistance (Refer to Table 3)
Thickness of building materials
Thermal conductivity of building materials (Refer to Table 1

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014
Form RTTV (Roof) 1-Calculation of RTTV roof

Sheet No.
15
BD Ref No. BD 2/9046/18 AND 6 WAI YI STREET TAIPO N T. AND 6 WAI YI STREET, TAI PO, N.T.

Guidelines on Design and Construction Requirements for Energy Efficiency of Residential Buildings 2014

 Form RITV (Roof) 2 - Summary of RITVroof of Building EnvelopesSheet No.
16
BD Ref No.
BD 2/9046/18
Building Address
REDEVELOPMENT OF TA POTOWN LOT NO.233, NOS. 2,4 AND 6 WAI YI STREET, TAI PO, N.T.

Overall Roof Area [a] $86.41 \mathrm{~m}^{2}$

Roof	Gross Roof Area $\left(m^{2}\right)$	Heat Conduction through Opaque Roof ($\mathrm{W} / \mathrm{m}^{2}$)	Heat Conduction through Skylight ($\mathrm{W} / \mathrm{m}^{2}$)	Solar Radiation through Skylight ($\mathrm{W} / \mathrm{m}^{2}$)	RTTVroof at Each Type of Roof ($\mathrm{W} / \mathrm{m}^{2}$)	Area-weighted RTTVroof ($\mathrm{W} / \mathrm{m}^{2}$)
	[b]	[c]	[d]	[e]	$[f]=[\mathrm{c}]+[\mathrm{d}]+[\mathrm{e}]$	$[g]=[f] \times[b][a]$
Fat Roof	86.41	3.48	0.00	0.00	3.48	3.48
					Overall RTTVroof $=$	3.48

