Code of Practice for Precast Concrete Construction 2016
Code of Practice
for
Precast Concrete Construction
2016
FOREWORD

The Buildings Department established the Technical Committee on the Code of Practice for Precast Concrete Construction (TC) in March 2012 for the purpose of collecting views and feedbacks on the use of the Code of Practice for Precast Concrete Construction 2003 (the 2003 Code) from the building industry and with a view to keeping the Code of Practice in pace with the advancement in design, technology and construction practice.

This Code, Code of Practice for Precast Concrete Construction 2016 (the 2016 Code) is issued upon completion of the review by the TC, which has focused on four fronts: (a) the advancement in design and technology; (b) the experience gained and the views and feedbacks received on the use of the 2003 Code; (c) the commonly adopted local practice on precast concrete construction; and (d) necessary updates consequent upon the publication of the Code of Practice for Structural Use of Concrete 2013, the issue of Practice Notes for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-143 and the issue of Construction Standard CS1:2010 and CS2:2012.

The contributions and efforts given by the invited members of the Technical Committee in the preparation of the 2016 Code are greatly appreciated.

This Code of Practice will be reviewed regularly. The Buildings Department welcomes suggestions for improving the Code.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11 Ductility</td>
<td>28</td>
</tr>
<tr>
<td>2.11.1 Construction incorporating precast concrete</td>
<td>28</td>
</tr>
<tr>
<td>2.11.2 Connections in equivalent monolithic systems</td>
<td>28</td>
</tr>
<tr>
<td>3 Construction</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Production planning</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Moulds</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1 Materials</td>
<td>29</td>
</tr>
<tr>
<td>3.2.2 Tolerances</td>
<td>29</td>
</tr>
<tr>
<td>3.2.3 Recesses, sleeves and boxouts</td>
<td>30</td>
</tr>
<tr>
<td>3.2.4 Mould release agents</td>
<td>30</td>
</tr>
<tr>
<td>3.3 Cast-in connections</td>
<td>30</td>
</tr>
<tr>
<td>3.4 Lifting inserts</td>
<td>30</td>
</tr>
<tr>
<td>3.4.1 General</td>
<td>30</td>
</tr>
<tr>
<td>3.4.2 Lifting position tolerances</td>
<td>30</td>
</tr>
<tr>
<td>3.5 Surface finishes</td>
<td>31</td>
</tr>
<tr>
<td>3.5.1 Types of finishes</td>
<td>31</td>
</tr>
<tr>
<td>3.5.2 Production</td>
<td>31</td>
</tr>
<tr>
<td>3.5.3 Tiled finishes</td>
<td>31</td>
</tr>
<tr>
<td>3.6 Prefabricated metal frames</td>
<td>31</td>
</tr>
<tr>
<td>3.7 Pre-concreting check</td>
<td>31</td>
</tr>
<tr>
<td>3.8 Concrete placing</td>
<td>32</td>
</tr>
<tr>
<td>3.9 Demoulding and lifting</td>
<td>32</td>
</tr>
<tr>
<td>3.10 Curing</td>
<td>32</td>
</tr>
<tr>
<td>3.10.1 Normal curing</td>
<td>32</td>
</tr>
<tr>
<td>3.10.2 Steam curing</td>
<td>33</td>
</tr>
<tr>
<td>3.11 Handling</td>
<td>33</td>
</tr>
<tr>
<td>3.12 Post-concreting check</td>
<td>33</td>
</tr>
<tr>
<td>3.12.1 General</td>
<td>33</td>
</tr>
<tr>
<td>3.12.2 Surface finish</td>
<td>33</td>
</tr>
<tr>
<td>3.13 Lifting equipment and accessories</td>
<td>34</td>
</tr>
<tr>
<td>3.14 Factory and site storage</td>
<td>34</td>
</tr>
<tr>
<td>3.15 Transportation</td>
<td>35</td>
</tr>
<tr>
<td>3.15.1 Delivery</td>
<td>35</td>
</tr>
<tr>
<td>3.15.2 Loading and storage on transporters</td>
<td>35</td>
</tr>
<tr>
<td>3.16 Erection</td>
<td>35</td>
</tr>
<tr>
<td>3.16.1 Erection preparation</td>
<td>35</td>
</tr>
<tr>
<td>3.16.2 Erection safety</td>
<td>35</td>
</tr>
<tr>
<td>3.16.3 Erection sequence</td>
<td>35</td>
</tr>
<tr>
<td>3.16.4 Missing or damaged lifting inserts</td>
<td>35</td>
</tr>
<tr>
<td>3.16.5 Rigging</td>
<td>36</td>
</tr>
<tr>
<td>3.16.6 Temporary bracing and supporting structures</td>
<td>36</td>
</tr>
<tr>
<td>3.16.7 Levelling shims</td>
<td>36</td>
</tr>
<tr>
<td>3.16.8 Propping</td>
<td>36</td>
</tr>
<tr>
<td>3.16.9 Cleansing to semi-precast slab</td>
<td>37</td>
</tr>
<tr>
<td>3.17 Tolerances</td>
<td>37</td>
</tr>
<tr>
<td>3.17.1 Production tolerance for precast concrete components</td>
<td>37</td>
</tr>
<tr>
<td>3.17.2 Erection tolerance for precast concrete components</td>
<td>38</td>
</tr>
<tr>
<td>3.17.3 Volumetric precast concrete components</td>
<td>39</td>
</tr>
</tbody>
</table>
4 Quality Control ... 41
 4.1 Factory.. 41
 4.1.1 General.. 41
 4.1.2 Testing standards... 41
 4.2 Site.. 42
 4.3 Special testing... 42
 4.3.1 Watertightness testing of external precast façade panels... 42
 4.3.2 Load testing.. 43
 4.3.3 Tiled finishes... 43

Appendix A: Connection Details

Appendix B: Precast Concrete Façade Typical Details

Appendix C: Lifting Devices Typical Details
LIST OF TABLES

Table 2.1 – Recommended equivalent load factors to account for demoulding .. 7
Table 2.2 – Recommended equivalent load factors to account for dynamic forces arising during handling, transportation and erection.. 7
Table 2.3 – Limits of chloride content of concrete... 8
Table 2.4 – Recommended factors of safety for lifting inserts and bracing ... 9
Table 2.5 – Allowances for effects of spalling at supports .. 16
Table 2.6 – Allowances for effects of spalling at supported members.. 17
Table 2.7 – Values of tan α_f for concrete connections... 20
Table 2.8 – Design ultimate horizontal shear stresses at interface .. 27
Table 3.1 – Recommended tolerances for lifting devices .. 30
Table 3.2 – Recommended minimum concrete strengths for lifting and handling.. 32
LIST OF FIGURES

Figure 2.1 – Types of tie in structural frame .. 11
Figure 2.2 – Continuity of ties: bars in precast member lapped with bar in insitu concrete 13
Figure 2.3 – Continuity of ties: anchorage by enclosing links .. 14
Figure 2.4 – Continuity of ties: bars lapped within insitu concrete ... 14
Figure 2.5 – Schematic arrangement of allowance for bearing .. 16
Figure 2.6 – Back-up materials and bond breakers in movement joints .. 21
Figure 2.7 – Typical examples of gaskets in joints ... 23
Figure 2.8 – Gasket junctions: Continuous grid or ladder gasket .. 23
1 GENERAL

1.1 SCOPE

This Code of Practice deals with the design, construction and quality control of structural and non-structural precast concrete elements. The design method used in this code is the Limit State Design as given in the Code of Practice for Structural Use of Concrete. Other alternative design approaches may also be used provided sufficient justifying calculations are submitted. For bridges and associated structures, reference should also be made to the Structures Design Manual for Highways and Railways issued by the Highways Department. All design should be carried out under the supervision of a registered structural engineer or authorized person, with the execution of the works carried out under proper supervision. The requirements outlined in this code apply to both structural and non-structural members.

1.2 DEFINITIONS

For the purpose of this Code of Practice, the following definitions apply:

- **Back-up material**: Material inserted in a joint that controls the depth and back profile of the applied sealant.
- **Bearing length**: The length of support, supported member or intermediate bedding material (whichever is the least) measured along the line of support (see Figure 2.5).
- **Bearing width**: The overlap of support and supported member measured at right angles to the line of support (see Figure 2.5).
- **Bedded bearing**: A bearing with contact surfaces having an intermediate bedding of cementitious material.
- **Bond breaker**: Film or thin strip of material applied to prevent sealant adhesion to the back of a joint.
- **Dry bearing**: A bearing with no intermediate bedding material.
- **Elastic sealant**: Sealant which exhibits predominantly elastic behaviour, i.e. stresses induced in the sealant as a result of joint movement are almost proportional to the strain.
- **Elastoplastic sealant**: Sealant which has predominantly elastic properties but exhibits some plastic properties when deformed over long periods.
- **Equivalent monolithic system**: A precast concrete structural system should have strength and ductility capacity equivalent to that provided by a comparable monolithic reinforced concrete structure.
- **Gasket**: Flexible, generally elastic, preformed material that forms a seal when compressed.
- **Isolated member**: A supported member, for which, in the event of failure, no secondary means of load transfer is available.
- **Joint filler**: Compressible, non-adhesive material used to fill movement joints during their construction.
- **Net bearing width**: The bearing width after allowance for ineffective bearing and constructional inaccuracies (see Figure 2.5).
Non-isolated member
A supported member which, in the event of loss of a support, would be capable of transferring its load to adjacent members.

Plastic sealant
Sealant which retains predominantly plastic properties, i.e. the stresses induced in the sealant as a result of joint movement are rapidly relieved.

Plastoelastic sealant
Sealant which has predominantly plastic properties with some elastic recovery when deformed for short periods.

Seal
Notionally impenetrable physical barrier in contact with the components forming the joint.

Sealant
Material, applied in an unformed state to a joint, which seals it by adhering to appropriate surfaces within the joint.

Sealing strip
Preformed material, which may have adhesive properties, that forms a seal when compressed between adjacent joint surfaces.

Simple bearing
A supported member bearing directly on a support, discounting the effect of projecting steel or added concrete.

1.3 SYMBOLS
For the purposes of this Code of Practice, the following symbols apply:

- \(G_k \) characteristic dead load
- \(Q_k \) characteristic imposed load
- \(f_{cu} \) characteristic strength of concrete
- \(f_y \) characteristic strength of reinforcement

Other symbols are defined in the text where they occur.
2 DESIGN

2.1 SCOPE

2.1.1 General

The considerations for design and detailing of structural and non-structural precast elements including joints and connections for buildings and building works are given in this section.

2.1.2 Standards and codes of practice

Precast concrete elements should be designed and constructed in compliance with the Building (Construction) Regulations and other relevant codes of practice.

The design method specified in this code of practice for the design of precast concrete elements is the Limit State Design method. Alternative design approaches may be used provided that sufficient justifications are given. Unless otherwise specified, the design considerations and detailing requirements recommended in the Code of Practice for Structural Use of Concrete should be followed.

2.2 PLANNING

2.2.1 Standardisation

Buildings utilising precast concrete construction should be planned wherever possible to utilise standardised precast concrete elements.

Most buildings will be unique and site specific. At the conceptual design stage, a basic layout plan should be developed which achieves a balance between architectural/aesthetic requirements and a high degree of standardisation. Therefore, close collaboration amongst different design parties is essential during conceptual design to achieve the optimum standardisation.

2.2.2 Buildability

Overall planning and detailed design should aim to achieve functionality with ease of construction. During conceptual design, consideration should be given to the following:

- ease/ means of transportation and any restrictions on vehicle size;
- access to and around the site;
- ease of erection;
- any overhead obstructions or power supplies;
- size and capacity of crane available to undertake erection;
- propping and/or bracing requirements;
- joint widths between adjacent precast elements should be sufficient to allow safe alignment during erection and to accommodate building movement and construction tolerances;
- jointing method;
- structural action; and
- cost of construction.

In addition, attention should be given to any special considerations affecting large sized panels particularly with regards to fabrication, de-moulding and transportation.

2.2.3 Voids and buried conduits

Where practical all voids and service openings should be preformed. Cast in/buried conduits should be placed within the reinforcement layers of the pre-cast unit.

2.2.4 Layout plan

Structural layout plans should be a complete and comprehensive set of drawings showing plans, sections, elevations and connection details of the different types of precast components used.
2.2.5 **Compatibility**

Whenever there are divided responsibilities for design and details in precast construction, detailed checks to ensure compatibility should be made by a designated party.

2.2.6 **Demolition**

Consideration should be given at planning stage to future demolition of the structure and any special requirements that are needed particularly with regards to prestressed structures.

2.3 **STABILITY**

2.3.1 **General**

The overall stability of the complete structure must be checked.

The temporary stability of the structure as well as that of the individual components during all stages of construction should be considered.

A structure comprising precast elements must possess adequate stability to resist wind load and other lateral loads. Cross walls or sway frames should be so arranged, as far as practicable, so as to provide lateral stability.

Many precast concrete structures are designed as pin jointed rather than with moment continuity as is the case with in situ concrete frames. The absence of the rigid frame means that, in the case of buildings, transverse stability is generally provided by shear walls, with floors transferring load by acting as horizontal plates. It is therefore essential to provide adequate ties between elements.

If wind load does not govern, stability should be checked for a minimum notional horizontal force acting at each floor level equals to 1.5% of the characteristic dead load between mid-heights of the storey under and above or the roof surface, as appropriate.

Consideration should be given to lateral stability during all stages of construction and erection where the behaviour of the precast elements may differ from the permanent condition. Adequate propping and bracing should be provided at all stages of construction to ensure stability is maintained at all times. A viable scheme showing how temporary stability is provided at each construction stage should be produced. The temporary works scheme should provide sufficient details including propping layouts for all stages of construction including the sequencing and timing of the dismantling of temporary works.

Particular attention should be given to stability and bracing requirements on high risk structures such as long span beams and high rise buildings.

2.3.2 **Displacement**

2.3.2.1 **General**

Structural members should possess adequate stiffness to prevent such deflection or deformation as might impair the strength or efficiency of the structure, or produce cracks in finishes or in partitions. The structure as a whole should possess adequate stiffness such that the maximum lateral deflection due solely to wind forces does not exceed 1/500 of the building height. In determining the total lateral deflection, an allowance should be included for the cumulative effects of deformation of connections (see clause 2.3.2.2).

2.3.2.2 **Connection deformation**

In determining the overall lateral displacement allowance must be made for slippage and deformation of connections in all structural elements. The cumulative value of deformation of connections at each level should be added to the deflection calculated from the structural analysis and the total value should comply with the limitation specified in clause 2.3.2.1.

2.3.3 **Disproportionate collapse**

Precast building structures should also be checked for disproportionate collapse as a result of progressive failure or the like.
2.4 **DURABILITY**

2.4.1 **General**

It is important to consider the required design life and durability of precast elements. For this purpose, the following factors are to be considered:

- shape and size of the precast unit;
- concrete constituents;
- concrete cover;
- the environmental exposure;
- protection against fire;
- protection and maintenance;
- production;
- transportation, storage and installation; and
- design of joint details.

In addition to the requirements given above, the recommendations specified in the Code of Practice for Structural Use of Concrete and the Building (Construction) Regulations should be followed.

2.4.2 **Shape of precast unit**

The precast unit should be designed and detailed to have good drainage such that no standing pools or excessive trapped moisture would occur.

Sharp corners or sudden changes in section cause stress concentrations that may lead to cracking or spalling of concrete and therefore should be avoided. Where sharp corners or sudden changes in section cannot be avoided because of practical reasons, stress concentrations should be checked and strengthening be provided as necessary.

Buckling and instability should be avoided during lifting and erection of long slender precast units. Lifting inserts should be located to ensure that compression flange buckling would not occur, particularly during manoeuvring of precast units.

2.4.3 **Concrete cover**

Cover for precast elements should be no less than those specified for reinforced concrete structures.

In respect of concrete cover requirements for protection against fire, the Code of Practice for Fire Safety in Buildings should be followed, whereas for protection against corrosion, the requirements under the Building (Construction) Regulations should be adopted.

For bridges and associated structures, reference should also be made to the requirements specified in the Highways Department’s Structures Design Manual for Highways and Railways, and the most onerous requirements should be used.

The cover to all brackets and fixings etc. should comply with the minimum cover requirements specified for reinforcement.

The fire resistance of joints fillers etc. should comply with the fire resistance requirements of the precast members.

2.4.4 **Protection and maintenance of joints and connections**

2.4.4.1 **General**

To achieve durability, connections should be properly filled with suitable material to prevent corrosion, cracking or spalling of concrete.

2.4.4.2 **Protection of steel**

Steel, except those for temporary use such as lifting anchor, used at connections should be protected with an adequate thickness of concrete, mortar or grout. The effectiveness of bonding of concrete or grout to steel surfaces must be considered.
2.4.3 Protection of fixings
If sufficient concrete cover cannot be provided to protect the fixings at connections, corrosion-resisting materials such as galvanised mild steel or stainless steel shall be used.

2.4.4 Maintenance accessibility
The importance of the connection and its readiness for inspection usually dictate the type of protection required. Connections that are not accessible for inspection should be properly protected from corrosion.

2.4.5 Movement
To avoid concrete spalling and cracking, allowance should be made for movement (see clause 2.7.7).

2.4.6 Thermal gradient
Reinforcing steel preventing cracking of concrete should be provided in both faces of panels that are subjected to substantial thermal gradients.

2.4.7 Other effects
Indirect effects resulted from loading changes, temperature differentials, creep, shrinkage, etc can affect the behaviour of structures.

Apart from compliance with general requirements for durability, cracking and deformation, strength and stability, the following may have to be considered:

- limiting the cracking and deformation arising from early-thermal movement, creep, shrinkage, etc; or
- minimising restraints on structural components by providing bearings or movement joints, or if restraints are inevitable, the design should take into consideration any significant effects that may arise.

2.5 LOADINGS
2.5.1 General
The appropriate loading requirements as specified in the Building (Construction) Regulations and the Code of Practice for Dead and Imposed Loads should be complied with.

Design considerations should also be given to:

- construction loads. A minimum load of 1.5 kN/m² should be used. However, due consideration should be given to any special requirements e.g. for plant loads or storage loads and the load increased accordingly;
- notional horizontal load. The lateral load should be taken as not less than 1.5% of the characteristic dead load (refer also to clause 2.3.1); and
- accidental loads such as earth movement, impact of construction vehicles.

2.5.2 Demoulding forces
An allowance should be made for the forces on the element due to suction or adhesion between the precast element and the mould when precast elements are lifted from a casting bed. These are accounted for by applying an equivalent load factor to the member self weight and treating it as an equivalent static force to evaluate the stresses in the precast element against the commensurate early strength attained. Table 2.1 gives recommended values of equivalent load factor for demoulding forces for different product types and finishes.
Table 2.1 – Recommended equivalent load factors to account for demoulding

<table>
<thead>
<tr>
<th>Product type</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat with removable side forms. No formed rebates or reveals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat with removable side forms. Formed rebates or reveals</td>
<td></td>
</tr>
<tr>
<td>Fluted with proper draft</td>
<td></td>
</tr>
<tr>
<td>Sculptured</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. These factors are to be applied to the flexural design of precast elements only. For lifting inserts, refer to Table 2.4
2. The above values are recommended values only. Guidance should also be sought from the precast manufacturer to verify their suitability.
3. The associated imposed loads or wind loads, if any, are to be assessed and considered under the appropriate load combination.

2.5.3 Handling and transportation
An allowance should be made for dynamic loads and impact forces arising during handling, transportation and erection. Similar to demoulding force consideration, Table 2.2 gives recommended values for equivalent load factor to be applied to the self weight of members to allow for these forces.

Table 2.2 – Recommended equivalent load factors to account for dynamic forces arising during handling, transportation and erection

<table>
<thead>
<tr>
<th>Stage</th>
<th>Load factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard handling</td>
<td>1.2</td>
</tr>
<tr>
<td>Transportation</td>
<td>1.5</td>
</tr>
<tr>
<td>Erection</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Notes:
1. These factors are to be applied to the flexural design of precast elements only. For lifting inserts, refer to Table 2.4
2. The above values are recommended values only. Under certain conditions higher factors may apply i.e. certain unfavourable road conditions.
3. The associated imposed loads or wind loads, if any, are to be assessed and considered with the appropriate load combination.

2.6 MATERIALS

2.6.1 General
For the requirements on the use of materials, the Building (Construction) Regulations should be followed. The material properties used for design should be obtained from the Code of Practice for Structural Use of Concrete.

2.6.2 Alkali-aggregate reaction

2.6.2.1 Alkali-silica reaction
Aggregates containing silica minerals are susceptible to attack by alkalis (Na₂O and K₂O) from the cement or other sources. Alkali-silica reaction causes cracking and reduces the strength of concrete.

Effective means of reducing the risk of alkali aggregate reaction include:
- control on the amount of cement used in the concrete mix;
- use of a low alkali cement;
- use of an appropriate cement replacement such as pulverised fuel ash (pfa); and
- the reactive alkali content of concrete expressed as the equivalent sodium oxide per cubic metre should not exceed 3.0 kg.
The concrete supplier should submit to the authorized person or registered structural engineer a mix design and Hong Kong Laboratory Accreditation Scheme (HOKLAS) endorsed test certificates giving calculations and test results demonstrating that the mix complies with the above limitation on reactive alkali content.

2.6.2.2 Alkali-carbonate reaction

Some carbonate aggregates may be susceptible to alkali-carbonate reaction, which is similar to alkali-silica reaction in its effects. If carbonate aggregates are to be used, specialist advice should be obtained.

2.6.3 Chlorides in concrete

Reinforcing steel is susceptible to corrosion with the presence of chloride in concrete.

The total chloride content of the concrete mix arising from the aggregate, admixtures and any other source should not exceed the limits given in Table 2.3.

The total chloride content should be calculated from the mix proportions and the measured chloride contents of each mix constituent.

Table 2.3 – Limits of chloride content of concrete

<table>
<thead>
<tr>
<th>Type or use of concrete</th>
<th>Maximum total chloride content expressed as a percentage of chloride ion by mass of cement * (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prestressed concrete</td>
<td>0.10</td>
</tr>
<tr>
<td>Steam-cured concrete</td>
<td>0.10</td>
</tr>
<tr>
<td>Concrete made with sulphate resistant cement</td>
<td>0.20</td>
</tr>
<tr>
<td>Concrete with embedded metal and made with Ordinary or Rapid Hardening Portland cement</td>
<td>0.35</td>
</tr>
</tbody>
</table>

* inclusive of pulverised fuel ash or ground granulated blast furnace slag when used

2.7 DESIGN CONSIDERATIONS

2.7.1 General

The recommended methods for design and detailing of reinforced concrete and prestressed concrete given in the Code of Practice for Structural Use of Concrete also apply to precast concrete elements. In addition, the following should also be considered:

- handling stresses;
- early lifting of precast element;
- temporary stages / erection sequence;
- lifting inserts;
- bracing design;
- design for movement;
- design of ties; and
- design of bearings.

2.7.2 Handling stresses

Precast units should not be inflicted with any permanent damage arising from their handling, storage, transportation and erection. Consideration should be given during design to:

- loads on erected elements at construction stage (refer to clause 2.5.1); and
- demoulding, storage, transportation and erection of precast units on site (refer to clauses 2.5.2 and 2.5.3).
2.7.3 Early lifting of precast element
Where precast elements are lifted and handled prior to gaining full strength the elements together
with any lifting inserts should be designed accordingly. Recommended minimum concrete strengths
for lifting and handling of precast elements are given in Table 3.2. Precast elements should be
designed, using these lower strengths, to span between lifting points without excessive cracking or
deflection.

For prestressed concrete, consideration should also be given to stresses resulting from transfer of
prestressing forces.

2.7.4 Temporary stages/erection sequence
The critical loading for precast elements is often not the permanent condition but can occur during
the construction phase and, hence, the temporary condition may govern the design of elements.
Consideration should be given to the loading imposed on precast elements during each phase of
construction. Examples of such cases are as follows:

- precast sections of composite elements which are required to support self weight plus
 construction load prior to casting of an insitu topping;
- lower precast floor slabs or precast stair flights which support propping to upper levels
during installation; and
- bearing or halving joints which support higher temporary construction loads because of
 back propping to upper levels.

The design should also take into consideration that the structural action and framing might be
different during the temporary stages resulting in higher stresses in individual members.

2.7.5 Lifting inserts

2.7.5.1 General
When determining the number and location of lifting inserts, the following should be considered:

- lifting insert capacity (safe working load);
- total weight of the element;
- strength of concrete at age of lifting (see clause 2.7.3);
- shape of the unit;
- location of the inserts so that the failure of any one insert does not cause failure of the
 entire lifting system thereby ensuring the element can still be safely supported;
- position of any cut-outs and/or openings; and
- rigging arrangement.

All lifting inserts should be purposely designed proprietary products. Reinforcing bars may only be
used as lifting inserts if specifically designed and installed for this purpose.

Table 2.4 gives recommended factors of safety at ultimate limit state for designing of lifting inserts.

Typically, lifting inserts should be designed with a factor of safety of 4. Where, they are to be used
for multiple lifts such as manhole covers, a factor of safety of 5 should be used. These factors are at
ultimate limit state.

Lifting inserts should be tested or evidence of testing of inserts to the ultimate load should be
provided.

Table 2.4 – Recommended factors of safety for lifting inserts and bracing

<table>
<thead>
<tr>
<th>Item</th>
<th>Recommended factor of safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bracing members</td>
<td>2</td>
</tr>
<tr>
<td>Bracing connections</td>
<td>3</td>
</tr>
<tr>
<td>Bracing inserts cast into precast members</td>
<td>3</td>
</tr>
<tr>
<td>Lifting inserts, normal circumstances</td>
<td>4</td>
</tr>
<tr>
<td>Lifting inserts, multiple usage</td>
<td>5</td>
</tr>
</tbody>
</table>
2.7.5.2 **Anchorage**

All lifting inserts require adequate embedment or anchorage to function effectively. Factors affecting anchorage include the following:

- proximity to element edges, openings, rebates or arises;
- proximity to other concurrently loaded lifting devices;
- concrete strength at lifting;
- concrete thickness;
- depth of embedment;
- presence of cracking;
- proximity of reinforcement or pre-stressing tendons; and
- tensile stresses in the concrete around the insert.

Guidance should be sought from the manufacturer when determining the safe working load of the inserts taking into consideration the above factors.

2.7.5.3 **Additional reinforcement**

Where additional reinforcement is required in the vicinity of the insert to generate the full load capacity of the insert, it should be detailed in accordance with the Code of Practice for Structural Use of Concrete and the manufacturer’s recommendations.

2.7.6 **Bracing design**

Bracing should be designed for both construction and wind loading. The construction load should be a minimum value of 1.5 kN/m² but should be increased if considered appropriate.

Wind loads should be calculated in accordance with the Code of Practice on Wind Effects in Hong Kong.

Recommended load factors for design of bracing and connections are given in Table 2.4.

2.7.7 **Design for movement**

Provision for movements is of great importance in precast construction. The type, number and spacing of joints should be determined at an early stage in the design and will be dependent upon the cumulative movement expected. In determining the width of the joint, allowance should also be made for production and erection tolerances (refer to clause 3.17). Causes of movements in structures include the following:

- creep deformations;
- early thermal shrinkage;
- long term shrinkage;
- differential settlement;
- thermal movement due to seasonal changes of temperature; and
- thermal movement due to temperature difference between internal and external environments.

When determining the range of movement for a particular joint, it should be borne in mind that not all movements are coexistent and the timescale over which different types of movement will occur should be taken into consideration. Also, due regard should be given to ambient temperature and age of precast elements and stage of construction at the time of formation of the joint.

The designer should also take into account the effects of eccentric moments caused by eccentricities from production and erection tolerances and cumulative moments at joints.

When precast units are incorporated into a structural system, the forces and deformations occurring in and adjacent to connections should be included in the design. Tolerances for precast units and interfacing members should be specified. Design of precast units and connections joints should include the effects of these tolerances.
2.7.8 Design of ties

2.7.8.1 General
To allow for damage or prevent progressive failure due to accidental loads which may result in the failure of a load bearing element, horizontal and vertical ties (or their equivalent) must be provided. Such ties provided should be continuous, and may be within the insitu concrete topping, or precast units, or partly within both the precast and insitu concrete. The various types of ties are to be designed to resist the minimum tensile forces as defined in clauses 2.7.8.4 to 2.7.8.8.

In the design of the ties, forces other than those given in clauses 2.7.8.4 to 2.7.8.8 may be ignored.

2.7.8.2 Provision of ties
Tie reinforcement should be designed to resist forces mentioned in clauses 2.7.8.4 to 2.7.8.8 whereas reinforcement provided for other purposes in columns, walls, beams and floors may be regarded as providing part of or the whole of these ties. A material partial safety factor of 1 can be used when determining the area of reinforcement required.

2.7.8.3 Types of ties
The types of ties to be provided for stability and interaction between precast units are as follows:

- internal ties;
- peripheral ties;
- horizontal ties to column and walls;
- corner column ties; and
- vertical ties to columns and walls.

Figure 2.1 shows a typical example of ties in building structures.

Figure 2.1 – Types of tie in structural frame
2.7.8.4 Internal ties

(a) Distribution
At each floor and roof, internal ties should be provided in two perpendicular directions. They should be continuous and except for horizontal ties to walls or columns they should be anchored to the peripheral ties at each end. They may be distributed evenly in the slabs or grouped in walls or at other suitable locations. Their spacing should generally be not greater than $1.5 \frac{l_c}{s}$ (where l_c equals the span length in the directions of the ties (in m) between the centres of the columns, frames or walls whichever greater). In walls, they should be within 0.5m of the top and bottom of floor slabs.

(b) Strength
Ties should be designed to resist, in each direction, a tensile force, T (in kN/m), equal to the greater of:

$$T = \frac{G_k + Q_k}{7.5} \times \frac{l_c}{S} \times F$$

where:
- G_k is the average characteristic dead floor load (in kN/m²);
- Q_k is the average characteristic imposed floor load (in kN/m²)
- l_c is as defined in 2.7.8.4 (a)
- F is defined as the lesser of $(20 + 4n)$ or 60 where n is the number of storeys.

For structures with single direction cross or spine walls, the length l_c for calculating the tie force in the direction of the wall should be the lesser of the actual length of the wall or the collapsed length in case of an accident. The collapsed length should be the distance between adjacent lateral supports or between a lateral support and a free edge, of the wall under consideration.

2.7.8.5 Peripheral ties
Peripheral ties should be provided at each floor and roof level for resisting a tension of $1.0 F$ (in kN per metre width). The peripheral ties should be placed within 1.2 m of the edge of the building or within the peripheral wall.

2.7.8.6 Horizontal ties to columns and walls
Every metre length of external bearing wall, unless the peripheral tie is located within that wall, should be anchored or tied horizontally into the structure at each floor and roof level. Every such tie should be able to resist a tension (in kN) equals to the greater of:

- the lesser of $2.0 F$ or $\left(\frac{h}{2.5}\right) F$ where h (in m) is the clear storey height; or
- 3% of the total design vertical load of the column or wall at that level.

Where the peripheral tie is placed within the wall or column, only horizontal ties or anchors as required in clause 2.7.8.4 need to be provided.

2.7.8.7 Corner column ties
Corner columns should be tied into the structure at each floor level in orthogonal directions as far as practicable. The ties should each be able to resist a force as calculated in accordance with clause 2.7.8.6.

2.7.8.8 Vertical ties to columns and walls
Each bearing wall or column should be tied continuously at all levels. The tie should be able to resist a tensile force equal to the maximum design dead and imposed load at the column or wall from any one storey.
2.7.8.9 *Tie anchorage*

A tie crossing another tie at right angles may be considered anchored if the bars extend:

- 12 times the bar diameter or an equivalent anchorage beyond the other tie; or
- an effective anchorage length, calculated from the tension force, beyond the centre-line of the other tie.

At abrupt changes in construction or at re-entrant corners, it is necessary to ensure that the ties are sufficiently anchored or to be made effective by other means.

2.7.8.10 *Continuity of ties*

A continuous tie must satisfy clause 2.8.1.3. The minimum thickness of insitu concrete section where tie bars are provided should be at least the total dimension of the bar diameter (or two diameters at laps) and twice the maximum aggregate size plus 10 mm.

To provide continuity the tie should also satisfy one of the following:

- a bar in a precast concrete unit lapped with a bar encased in insitu concrete bounded on two opposite sides by rough faces of the same precast unit (see Figure 2.2);
- a bar in a precast concrete unit lapped with a bar encased in the topping of insitu concrete tied to the precast unit by links or stirrups. The tensile resistance of such links and stirrups should not be less than the designed tension in the tie (see Figure 2.3);
- bars lapped within insitu topping concrete with projecting links or stirrups from the supporting precast units, such as beams or slabs (see Figure 2.4); or
- bars extended from the precast units connected by a method as given in clause 2.8.1.3.

![Figure 2.2](image.png)

Figure 2.2 – Continuity of ties: bars in precast member lapped with bar in insitu concrete
2.7.8.11 Anchorage in structures
All precast floor and precast roof units should be effectively anchored if these units are not utilised to provide the ties in accordance with clauses 2.7.8.1 to 2.7.8.8. The anchorage should be capable of supporting the dead weight of the precast unit to that part of the structure which contains the ties.

2.7.8.12 Eccentricity
Ties connecting precast floor or roof units should be so designed and placed as to minimise eccentricity.

2.7.8.13 Anchorage at supports
In case reinforcing bars are used to provide the structural integrity of slab ends supported on corbels or nibs, great care must be taken to ensure it is adequately lapped and anchored (see clauses 2.7.8.9 and 2.7.8.10). Allowance should also be made for constructional inaccuracies (see clause 2.7.9.9).

2.7.9 Design of bearings
2.7.9.1 General
The integrity of a bearing is preserved by three essential measures:
- an overlap of reinforcement in reinforced bearings;
- a restraint preventing loss of bearing due to movement; and
- an allowance for the cumulative effects resulting from production and erection tolerances (see clause 3.17).

2.7.9.2 Net bearing width of non-isolated members
The net bearing width for a member should be taken as:

$$\text{Net bearing width} = \frac{\text{ultimate support reaction}}{\text{effective bearing length} \times \text{ultimate bearing stress}}$$

or 40 mm, whichever is greater.
(See clause 2.7.9.3 for determination of the effective bearing length and clause 2.7.9.4 for the design ultimate bearing stress.)

The net bearing width should be increased to cater for any free movement permitted or rotation of the bearing about the support.

2.7.9.3 Effective bearing length

The effective bearing length of a member is the lesser of:

- bearing length;
- one-half of bearing length plus 100 mm; or
- 600 mm.

2.7.9.4 Design ultimate bearing stress

The design ultimate bearing stress is based on the weaker of the two bearing surfaces and is calculated as follows:

- \(0.4f_{cu} \) for dry bearing on the concrete;
- \(0.6f_{cu} \) for bedded bearing on concrete; or
- \(0.8f_{cu} \) for contact face of a steel bearing plate cast into a member or support, with each dimension not exceeding 40% of the corresponding concrete dimension.

An intermediate value of bearing stress between dry and bedded bearings may be used for flexible bedding.

2.7.9.5 Net bearing width of isolated members

The net bearing width for isolated members should be that of non-isolated members plus 20 mm.

2.7.9.6 Detailing for simple bearing

Over and above the net bearing width calculated in accordance with 2.7.9.2, allowances for spalling and constructional inaccuracies should be made in the nominal width selected (see Figure 2.5). The effects of accidental displacement of a supported member during erection should also be considered. The minimum anchorage lengths of reinforcement required by the Code of Practice for Structural Use of Concrete should be provided.
2.7.9.7 Allowances for spalling at supports

Recommendations for the allowances of ineffective portion of bearing area are given in Tables 2.5 and 2.6. When determining the outer edge of a support or the end of a supported member, chamfers occurring within the areas subjected to spalling may be discounted.

Table 2.5 – Allowances for effects of spalling at supports

<table>
<thead>
<tr>
<th>Material of support</th>
<th>Distance assumed ineffective (mm) (measured from outer edge of support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>0</td>
</tr>
<tr>
<td>Concrete grade 30 or above, plain or reinforced (in general)</td>
<td>15</td>
</tr>
<tr>
<td>Concrete less than grade 30, plain or reinforced (in general)</td>
<td>25</td>
</tr>
<tr>
<td>Reinforced concrete with outer edge less than 300mm deep where vertical loop is not greater than 12mm diameter</td>
<td>Nominal end cover to reinforcement on outer face of support</td>
</tr>
<tr>
<td>Reinforced concrete with outer edge less than 300mm deep where vertical loop is 16mm diameter or above</td>
<td>Nominal cover plus inner radius of bend of bars</td>
</tr>
</tbody>
</table>

When particular constituent materials are used in concrete, adjustment to the distances assumed should be made.
Table 2.6 – Allowances for effects of spalling at supported members

<table>
<thead>
<tr>
<th>Reinforcement at bearing of supported member</th>
<th>Distance assumed ineffective (mm) (measured from end of supported member)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight bar, horizontal loops or vertical loops of 12 mm diameter or less</td>
<td>The greater of 10 mm or nominal end cover</td>
</tr>
<tr>
<td>Tendons or straight bars exposed at end of member</td>
<td>0</td>
</tr>
<tr>
<td>Vertical loops of 16 mm diameter or above</td>
<td>Nominal end cover plus inner radius of bend of bars</td>
</tr>
</tbody>
</table>

2.7.9.8 Steel shims
Steel shims should not be used at areas that are susceptible to spalling. It is essential that steel shims should be removed after grouting. When joint details are prepared, it should be demonstrated that all shims can be easily removed. Where steel shims cannot be removed, the effect of load transfer via the shims should be designed for.

2.7.9.9 Allowance for construction inaccuracies
The cumulative effect of construction inaccuracies and manufacturing tolerances should be allowed for. Recommendations for tolerances are given in clause 3.17 for production and erection respectively.

The provision of clearances is recognised by the designer and the fabricator of the need for interface tolerances. Clearance should provide a buffer area where combined erection and production variations can be absorbed, and the actual clearance provided should reflect all the specified tolerances. The minimum combined total tolerance allowed should be at least equal to the square root of the sum of the individual tolerances squared.

2.7.9.10 Bearings transmitting compressive forces
Where a bearing is required to transmit vertical load from a wall which extends over the end of a supported member, a bedded bearing should be used.

2.7.9.11 Other forces at bearings
(a) Horizontal forces at bearing
The horizontal forces at bearings may be induced by creep, shrinkage, temperature effects, misalignment, lack of plumb or other causes. When these forces are significant, the structural capacity of the supporting member may be impaired. Allowances should be made by the provision of:
- sliding bearings which allow longitudinal and lateral movement;
- additional lateral reinforcement at the top of the supporting member; or
- continuity reinforcement which ties the ends of the supported members together.

(b) Rotation at bearing
Suitable bearings should be used to accommodate the rotations at end supports in particular for flexural members. Allowances should be made for any consequential increases in bending moments or bearing stresses due to rotations.

2.7.9.12 Concrete corbel
The design and reinforcement detailing of corbels should be in accordance with the Code of Practice for Structural Use of Concrete.
2.8 JOINTS AND CONNECTIONS
2.8.1 Structural connections

2.8.1.1 General
The overall stability of a building and the temporary stability of individual members during construction should be checked. The recommendations of clause 2.3 should be followed. Handling and construction stresses should be considered. Creep effects for prestressed members should also be considered. If connection failure could result in a catastrophic failure of the structure, these connections should be avoided and the registered structural engineer should use a detail appropriate to the circumstance.

Requirements for anchorage and continuity of ties at connections are given in clauses 2.7.8.9 and 2.7.8.10. Account should be taken of the effects on connections of movements and whether or not these need to be specifically catered for.

The recommendations for design of joints are given in clause 2.8.2.

A free flowing, self-compacting and non-shrink grout should be used at the interface with the precast elements to minimise the risk of cracking and to ensure good compaction at the connection.

For some precast elements such as semi-precast balconies or lost forms, the preparation and specification of the construction joints should be carefully monitored and specified to ensure that the design is adequate and the intent and details are reflected in the construction details.

The fire resistance and durability requirements for connection should be at least similar to the members being connected.

2.8.1.2 Design
The design of connections should follow those design methods and considerations for reinforced concrete, prestressed concrete and structural steel. Otherwise, the connection design should be based on tests.

2.8.1.3 Detailing of reinforcement
(a) General
The design of connections should take into account those assumptions made in the analysis of the overall structure as well as those elements at critical sections.

(b) Lapping of bars
Where bars passing through the connection are lapped to provide continuity of reinforcement, the recommendations of the Code of Practice for Structural Use of Concrete and clause 2.7.8.10 of this code apply.

(c) Reinforcement grouted into aperture
An adequate capacity should be provided for grouted reinforcing bars to prevent pullout.

(d) Reinforcement loops
Where dowel bars pass through overlapping loops of reinforcement, which project from each supported member, to provide continuity over a support the bearing stress of the loops should be in accordance with the Code of Practice for Structural Use of Concrete.

(e) Couplers
Reinforcement may be connected by couplers. The concrete cover to the couplers should not be less than that specified for reinforcement.

A locking device should be used for threaded coupler connections where there is a risk of the threaded connection working loose, e.g. during vibration of in situ concrete. Reference should be made to the relevant Standards and the manufacturers’ technical specifications for guidance and acceptance criteria for the usage and testing of couplers.

(f) Welding of bars
When bars are connected by welding, the connection should be designed to accommodate the forces applied. Reference should be made to the relevant Standards and the manufacturers’ technical specifications for guidance and acceptance criteria for the work and testing of welding bars.
(g) Sleeving

Either of the following types of sleeve may be used for jointing, provided the strength and deformation of the connection have been determined by test:

• grouted, resin-filled or swaged sleeve capable of transmitting both tensile and compressive forces; or
• sleeves that mechanically align the square-sawn ends of two bars to allow the transmission of compressive forces only.

The maximum bar size used for the sleeved connection should be carefully considered taking into account the necessary force transmission and anti-bursting considerations as well as practical considerations to avoid congestion with other reinforcement bars in the precast elements. The design, manufacture and method of assembly of the sleeved joint should ensure the accurate alignment of the ends of the two bars into the sleeve. The sleeve should be provided with concrete cover not less than that specified for normal reinforcing bars.

2.8.1.4 Connections in compression

The connection should be designed to resist the forces and moments derived from the analysis of the structure. In normal circumstances, the area of concrete to be utilised for calculating the strength of the connection in a wall or column should be the greater of:

• 75% of the area of contact between the wall or column and connection; or
• the area of the insitu concrete excluding the part of any intruding slab or beam units

However those parts of the floor slab or beam units that are solid over the bearing may be included in calculating the strength and such units should be properly bedded on concrete or mortar of adequate quality. This area should not be taken as greater than 90% of the wall or column area.

2.8.1.5 Connections in shear

A shear connection may be assumed effective if the connection is grouted with a suitable concrete or mortar mix of adequate strength and one of the following conditions is satisfied:

(a) Units transmitting in-plane shear

The units should be restrained from moving apart. Provided the design ultimate shear stress in the connection does not exceed 0.23 N/mm², reinforcement need not be provided in or across the connection, and the sides of the units forming the connection may have a normal finish. Smooth moulded finishes should be roughened.

(b) Joints under compression Shear stress less than 0.45 N/mm²

Provided the design ultimate shear stress does not exceed 0.45 N/mm² and the sides or ends of the panels or units forming the connection have a rough as-cast finish, reinforcement will not be required.

(c) Shear stress less than 1.3 N/mm²

Where the shear stress due to ultimate loads, calculated on the minimum root area of a castellated connection, is less than 1.3 N/mm², separation of the units normal to the connection should be prevented under all loading conditions by either steel ties across the ends of the connection or by the compressive force normal to the connection. The projecting keys of a castellated connection are usually tapered to ease the removal of formwork. However, the taper should not be excessive in order to limit any movements in the connection.

(d) Shear reinforcement provided

The entire shear force V due to design ultimate loads should not exceed:

\[V = 0.6 F_b \tan \alpha_f \]

where;

\[F_b = 0.87 f_y A_s \]; or the anchorage value of the reinforcement, whichever is the lesser,

\[A_s \] is the minimum area of reinforcement,

\[\alpha_f \] is the angle of internal friction between the faces of the connection

Note: \(\tan \alpha_f \) can vary between 0.7 and 1.7 and is best determined by tests. However, for concrete-to-concrete connections, the values used may be taken from Table 2.7.
Table 2.7 – Values of tan αf for concrete connections

<table>
<thead>
<tr>
<th>Type of surface</th>
<th>tan αf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth interface, as in untreated concrete</td>
<td>0.7</td>
</tr>
<tr>
<td>Roughened or castellated connection without continuous insitu strips across the ends of connection</td>
<td>1.4</td>
</tr>
<tr>
<td>Roughened or castellated connection with continuous insitu strips across the ends of connection</td>
<td>1.7</td>
</tr>
</tbody>
</table>

2.8.1.6 Examples of connections

Examples of typical connections are shown in Appendix A. These connections are for illustrative purposes only. In all instances, the design should demonstrate that the connections are able to resist the applied structural actions. Where appropriate, the suitability of the connection to act as a pinned or moment connection is highlighted.

2.8.2 Joints

2.8.2.1 Scope

This section deals with the detailing of joints between external precast panels ensuring that the joints are watertight against the wind and rain. Guidance is given on the design of joints and examples of typical joints are illustrated.

The performance of a specific joint is critically influenced by the exposure conditions, the joint movements and the properties of the jointing materials used. The typical details given in this code are provided for general guidance. For optimum performance and maximum life, specific advice should always be sought from the manufacturers of the materials used.

2.8.2.2 Sealants for joints

(a) General

In choosing the appropriate type of sealant for the joints, consideration should be made in respect of the movements between the components to be joined, the bond that is achievable between the components and the sealant, and the nature of the sealing material itself.

Sealants are classified as elastic, elastoplastic, plastoelastic or plastic according to their response to movement.

(b) Joint width

Joint widths should be sized to accommodate construction tolerances, and the accommodation of movements without overstressing the jointing material. Irrespective of movement, a joint width of 5 mm is the minimum practicable for sealant application.

(c) Joint preparation

Satisfactory performance is critically dependent on the satisfactory adhesion of the sealant to the joint surfaces. Primers may be recommended by the manufacturer for some materials. Formwork oils, curing compounds, silicone waterproofing admixtures and surface coating materials may reduce bond and require special precautions.

Water jetting, sand blasting, wire brushing or the use of retarder may be required to prepare the concrete joint surfaces in certain instances.

Consideration should be given to the use of chamfers to reduce edge damage.

2.8.2.3 Back up material and bond breaker

To ensure good adhesion, a firm backing should be provided for the application of sealants. The required shape and proportions of the sealant are achieved by the correct installation of the back up material.

Sealants in movement joints should not adhere to the backing material to avoid any unnecessary restraint.

To ensure that the sealant and back up materials, bond breakers and joints fillers are compatible and appropriate for the proposed end use, advice from the manufacturer should be obtained as necessary.
The sealant backing may be provided by a closed cell foam back up material alone (see figure 2.6a), a thin self-adhesive bond breaker tape (see figure 2.6b) or a joint filler separated from the sealant by a thin self-adhesive bond breaking tape (see figure 2.6c).

Figure 2.6 – Back-up materials and bond breakers in movement joints

2.6(a) Back up strip also acts as bond breaker. Edge chamfer keeps tiling clear of sealant and protects corner of unit/side of joint from damage

2.6(b) Face of joint opened up to give adequate sealant width. Tape bridges narrow joint

2.6(c) Bond breaker tape separates joint filler from sealant
(a) Minimum joint gap widths
The minimum joint gap width should be derived to accommodate the construction and manufacturing tolerances, the range of movements anticipated, the required dimensions of the sealant to accommodate those movements, and the desired appearance.

A minimum joint width of 12 mm between panels is a common practice. However, for structural movement joints, a joint width of 50 mm or more may be required. Joints of such width require special sealant properties to avoid slump.

For elastic sealants, the minimum thickness should be 5 mm, the ratio of width to thickness should never exceed 1:1 and for optimum performance 2:1.

(b) Sealant application
High moisture content may be detrimental to the adhesion of the sealant. Sealing should not be undertaken if there is free water present on the surface of the concrete.

(c) Types of movement
 (i) General
 The magnitude of the movement, and also the mode, frequency and rate of movement affect the performance of a sealed joint.
 (ii) Choice of sealant
 There are many factors affecting the choice of sealant suitable for the different types of movement. However, as a general rule, joints which have to accommodate frequent and rapid movement need an elastic sealant, while joints in massive components, with high thermal inertia resulting in much slower movement, may be satisfactorily sealed with an elastoplastic, plastoelastic or a plastic sealant.
 (iii) Types and causes of failure of sealants
 The different ways in which sealants can fail as a consequence of different factors including climatic conditions, environmental factors, substrate incompatibility, abrasion and traffic loading need to be considered when selecting a sealant.

2.8.2.4 Gaskets
 (a) General
 Gaskets are used to provide a barrier against wind and rain. They are required to be under compression at all times for proper functioning.
 (b) Materials
 Gaskets made of natural rubber compounds have to be protected from the weather by a synthetic rubber skin. For special properties, such as resistance to oils, synthetic rubbers and plastic materials have to be specifically formulated for the intended use. Gaskets can be various profiles of solid or hollow section formed from cellular or non-cellular material or combinations of these sections or materials. Variations in the mechanical properties of cellular gaskets are achieved by variations in density, material hardness and cell size and whether or not cells are interconnecting.
 Cellular materials have a relatively shorter service life in general unless they are protected from UV degradation by an outer skin of non-cellular material.
 Cellular material is available in sheets with or without adhesive and backing paper, and can be cut to provide simple relatively inexpensive gaskets.
 Open cell materials are available impregnated with waxes or bituminous compounds, and may also be adhesive coated.
 (c) Design
 (i) General
 The selection of components and their edge profiles, the method and sequence of installation and the type of gasket are inter-related. It is always advisable to consult manufacturers at an early stage in the joint design. When designing gasket sealed joints, the recommendations of clause 2.8.2.4(c) (ii to vii) should be considered.
(ii) Primary and secondary seals
Gasket joints should be designed to provide primary and secondary points of gasket contact having an air space between them (see figure 2.7(b) and 2.7(c)).

![Diagram of gasket joints](image)

Figure 2.7 – Typical examples of gaskets in joints

(iii) Continuity at junctions between horizontal and vertical gaskets
For gaskets to be effective, continuity of seal should be provided at the junctions between the horizontal and vertical gaskets. These complex junctions are best produced as factory made joints incorporated as part of a gasket grid, so that site jointing is limited to simple butt joints (see figure 2.8).

![Diagram of gasket junctions](image)

Note: All site joints to be simple butt joints and clear of vertical/horizontal junctions.

Figure 2.8 – Gasket junctions: Continuous grid or ladder gasket
Gaskets connected by butt joints should only be used where good protection and effective continuity are provided at the joint. Where continuity cannot be achieved, especially at junctions in vertical joints, it is necessary that effective drainage, weather protection and adequate gasket overlaps are provided.

(iv) Movement joints
When used in movement joints, gaskets should be deformed sufficiently to maintain compression over the entire movement range, yet not be so highly compressed as to incur significant compression set. For example, a cellular neoprene gasket should not be compressed in service more than 50% of its uncompressed thickness.

Gasket seals in movement joints can be fully effective from the completion of the installation.

(v) Installation
Care is needed in handling gaskets to avoid deformation or damage. Although the preparation of surfaces is not as critical as for sealants, it is essential that all surfaces should be clean, sound and free from gross imperfections. To ease the insertion of gaskets into a joint, lubricants recommended by the manufacturer may be used. Where possible, gaskets should not be stretched during installation. However, if this is unavoidable, sufficient time should be given for the gaskets to recover before trimming.

(vi) Force
The force necessary to compress a length of gasket in a joint can be considerable, particularly when the joint is assembled in the sequence component/gasket/ component. As a result, gaskets when correctly installed may exert force, such force should be taken into account in the course of design.

(vii) Durability
The useful life of gasket materials has to be considered at the design stage. In movement and other important joints, gasket life may be less than the building life. The conditions of use, qualities of materials etc. determine the actual life of the gasket. It may be necessary to specify that seals may need major attention or replacement during the life of the structure.

2.8.2.5 Sealing strips
(a) General
Preformed sealing strips are available in a range of sizes and sections. There are two basic types:
- mastic strips; and
- impregnated or coated cellular strips.

(b) Mastic strips
These are normally installed during the assembly of components. They require an initial compression to ensure proper adhesion to the components forming the joint. As a degree of compression is also required during in service, mastic strips are unsuitable for joints which open beyond their assembled size.

(c) Impregnated or coated cellular strips
These may be supplied in a pre-compressed form, and one face may be adhesive coated. When pre-compressed, they can readily be installed within the joint gaps, but should be of a suitable size to be maintained under the degree of compression specified by the manufacturer throughout the range of joint movements. The degree of compression may be varied according to the level of sealing performance required.

To ensure uniformity of compression and stability of the seal, it is important that the joint faces are parallel. Seal stability is also influenced by the installed depth to width ratio of the seal, which should not exceed 1:1 in service. At installation a ratio of 2:1 should be achieved. Sufficient joint depth must be provided to accommodate the seal with these depth to width ratios.
For external applications, sealing strips should have adequate exposure resistance for the proposed service conditions.

2.8.2.6 Joint fillers
(a) General
Fillers for movement joints should be carefully selected to suit their intended use. To ensure that the sealant and filler are compatible, advice from the manufacturer should be sought.

Expanded polystyrene is not a suitable material for a joint filler.

(b) Functions
Joint fillers have the following functions:
- form part of the initial joint;
- during construction provide a barrier to dirt or debris, which could prevent joint closure;
- control the depth of sealant in the joint; and
- support the sealant.

(c) Properties
Joint fillers require the following properties:
- should be compressible;
- should not be extruded from the joint;
- should have resilience;
- should be non-staining;
- should not contain cellulose to prevent termite investation;
- should have resistance to damage in handling; and
- should not present a fire hazard.

2.8.2.7 Overlapping of precast façade
The resistance to water penetration between the upper and lower panel of precast façade is commonly provided by an upstand profile. A minimum overlap of 75mm between the upper and lower panel is recommended.

2.8.2.8 Testing
Precast panels often include cast in window frames, and the window assemblies are commonly subjected to tests for the infiltration of air and water. To test the potential joint performance, consideration may be given to incorporating panel to panel joints in the window test assembly.

The most effective test, as it encompasses site workmanship, and also can encompass a large number of joints, is inspection of the completed panel joints for damp or leakage after heavy rain at site.

In the absence of heavy rain, specific joints can be tested by spraying them with water. The hose should deliver water as a spray, not a solid jet, and the water should be directed horizontally, not upward (see clause 4.3.1 for water-tightness testing of façade panels).

2.8.2.9 Maintenance
The design of joints should allow for inspection, repair and, if necessary, replacement of deteriorated jointing products during maintenance. All joints should be designed in a manner that should be accessible for inspection and repair without major disruption to the building occupants. However, for practical reasons, the temporary removal of some interior decoration might be necessary.

Building maintenance manuals should be provided to include the following:
- an inspection schedule;
- an expected replacement schedule for jointing products;
- an identification of joints where lack of maintenance would lead to significant consequential damage;
• guidance on how to maintain joints; and
• means to identify products or types of jointing products used.

2.9 COMPOSITE CONCRETE CONSTRUCTION

2.9.1 General
Where reinforced or prestressed precast concrete units are connected with in situ concrete to resist flexure, provision for horizontal shear transfer at the contact surface should be made. Sufficient bond at the interface of the precast element and the in situ concrete should also be provided. Testing should be conducted if necessary.

2.9.1.1 Analysis and design
The analysis and design of composite concrete structures and members should be in accordance with the Code of Practice for Structural Use of Concrete.

2.9.1.2 Construction methods
The construction methods used should be compatible with the design of component parts as well as the composite sections. Where props are used, stresses and deflections should be checked to be within allowable limits.

2.9.1.3 Relative stiffness
The relative stiffness of members should be determined from the concrete gross or transformed section. If the concrete strengths of the two components of a composite member differ by more than 10 N/mm² a transformed section making allowance for such difference should be used. Otherwise, the concrete gross section should be used.

2.9.1.4 Precast pre-tensioned units designed as continuous members
When the designed continuity is made by reinforced concrete cast in situ over the supports, the compressive stresses due to prestress in the ends of the units may be ignored over the transmission length for the tendons.

2.9.1.5 Differential shrinkage
(a) General
Differential shrinkage may lead to increased stresses in the composite section where there is an appreciable difference between the age and quality of the concrete in the individual components and these stresses should be checked. The effects are likely to be more severe when the precast component is reinforced concrete or prestressed concrete with an approximately triangular distribution of stress due to prestress. The tensile stresses induced by differential shrinkage should also be considered at design stage.

(b) Tensile stresses
The differential shrinkage coefficient (the difference in total free strain between the two components of the composite member) needs to be established to calculate the resultant tensile stresses. The various factors affecting the coefficient have to be considered and taken in to account.

(c) Approximate value of differential shrinkage coefficient
In the absence of exact data, when designing precast T-beams with an in situ concrete flange, a value of 100x10⁻⁶ may be assumed for the differential shrinkage coefficient within buildings in a normal environment.

2.9.1.6 Horizontal shear force due to ultimate loads
The horizontal shear force due to ultimate load at the interface of the precast and in situ components is either:
• the total compression (or tension) calculated from the ultimate bending moment if the interface is in the tension zone; or
• the compression from that part of the compression zone above the interface, calculated from the ultimate bending moment if the interface is in the compression zone.
2.9.1.7 Average horizontal design shear stress

The average horizontal design shear stress is the stress obtained by dividing the design horizontal shear force by the area obtained by multiplying the contact width by the beam length between the point of maximum positive or negative design moment and the point of zero moment.

The average horizontal design shear stress should then be distributed in proportion to the vertical design shear force diagram to give the design ultimate horizontal shear stress at any point along the length of the member. The design shear stress v_h should be less than the appropriate value in Table 2.8.

Table 2.8 – Design ultimate horizontal shear stresses at interface

<table>
<thead>
<tr>
<th>Precast unit</th>
<th>Surface condition</th>
<th>Insitu concrete grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 (N/mm²)</td>
</tr>
<tr>
<td>No links</td>
<td>as-cast or as-extruded</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>brushed, screeded or rough-tamped</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>washed to remove laitance or treated with retarder and cleaned</td>
<td>0.7</td>
</tr>
<tr>
<td>Nominal links projecting into insitu concrete</td>
<td>as-cast or as-extruded</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>brushed, screeded or rough-tamped</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>washed to remove laitance or treated with retarder and cleaned</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Notes:
1. The description 'as-cast' covers those cases where the concrete is placed and vibrated leaving a rough finish. The surface is rougher than would be required for finishes to be applied directly without a further finishing screed but not as rough as would be obtained if tamping, brushing or other artificial roughening had taken place.
2. The description 'as-extruded' covers those cases in which an open-textured surface is produced direct from an extruding machine.
3. The description 'brushed, screeded or rough-tamped' covers cases where some form of deliberate surface roughening has taken place but not to the extent of exposing the aggregate.
4. For structural assessment purposes, it may be assumed that the appropriate value of γ_m included in the table is 1.5.

2.9.1.8 Nominal links

Nominal links with a gross sectional area of at least 0.15% of the contact area should be provided. Spacing should not be excessive. The spacing of links in T-beam ribs with composite flanges should not exceed the greater of four times the minimum thickness of the insitu concrete or 600 mm. Links should be adequately anchored on both sides of the interface.

2.9.1.9 Links in excess of nominal

If the horizontal shear stress obtained in accordance with clause 2.9.1.7 exceeds the value given in Table 2.8, all the horizontal shear force should be designed to be taken by the reinforcement anchored either side of the interface.

The area of steel required A_h (mm²/m) should be calculated from the following equation.

$$A_h = \frac{0.87 \times b \times v_h}{1000 \times f_y}$$

where: b is the breadth of the section in mm, and v_h is the design shear stress in N/mm² as defined in clause 2.9.1.7.

2.9.1.10 Vertical shear

(a) General

For composite members resisting vertical shear due to design ultimate loads, the design should be in accordance with the Code of Practice for Structural Use of Concrete.

(b) Insitu concrete with precast prestressed units
When the composite concrete section is used in the design of such units, the design principal tensile stress should not exceed $0.24 \sqrt{f_{cu}}$ anywhere in the prestressed units. The stress should be calculated by making due allowance for the construction sequence and by taking 0.8 times the compressive stress due to prestress at the section considered.

2.9.1.11 Structural topping

(a) Thickness
The minimum recommended thickness is 40 mm nominal with a local minimum of 25 mm.

(b) Workmanship
Workmanship is important to achieve a good shear connection. Generally, the topping should be well vibrated onto a surface that has been dampened but is free from standing water.

Where electrical conduits and the like are to be included within the structure, the minimum thickness of topping should be increased accordingly.

Under no circumstances should structural topping be used to adjust level differences as a result of erection tolerances thereby resulting in local areas where the thickness is less than the minimum specified above.

2.10 NON-STRUCTURAL ELEMENTS

Non-structural precast elements, for example façade panels or non-loadbearing partitions, whilst not forming part of the structural framing system of a structure will nonetheless be subjected to selfweight and wind loading. The elements and their connections should therefore be designed in a similar manner to structural precast elements and in accordance with the relevant sections of clauses 2.1 to 2.9. Refer to Appendix B for the typical installation details for precast concrete façade panels.

2.11 DUCTILITY

2.11.1 Construction incorporating precast concrete
When moment resisting frames and structural walls involve precast concrete elements, “equivalent monolithic” systems should be adopted.

2.11.2 Connections in equivalent monolithic systems
Strong connections are to be applied to precast concrete elements of equivalent monolithic systems in moment resisting frames and structural walls, strong connections are designed to provide a certain degree of ability to deform beyond elastic limit without excessive strength or stiffness degradation and to ensure that flexural yielding occurs away from the connection region. The design should accommodate possible yield penetration into the connection region as in cast-in-place construction and to follow the principle adopted in the Code of Practice for Structural Use of Concrete on detailing for ductility.
3 CONSTRUCTION

3.1 PRODUCTION PLANNING

Detailed planning at the pre-production stage is essential to ensure a safe and successful manufacturing, supply and erection process for a precast concrete system. The manufacturing programme and resources must be synchronised so that the delivery rate matches the project construction requirements and available site storage. Any special transport requirements or site access limitations that may require deliveries outside normal working hours should be identified at this stage.

A lead in time for the fabrication of precasting moulds, trial elements and connections details should be allowed for. Up to six months may not be an unusual period.

Production shop drawings, usually prepared by the precasting manufacturer, should include all necessary information for the following items:

- member shapes (elevations and sections) and dimensions;
- sections and details to indicate quantities and position of reinforcement, anchors, inserts, etc.;
- joint and connection details;
- production tolerances;
- handling devices including specifically fabricated lifting beams/frames and strongbacks;
- finishes;
- bearing seats;
- methods for storage, lifting and transportation; and
- unique identification, location and orientation information which is to be marked on the units.

3.2 MOULDS

3.2.1 Materials

Several factors should be considered when choosing the material for constructing precast moulds such as: repetitive use of the mould, economics, required surface finish type and quality and the shape complexity of the precast unit. Environmental aspects should also be considered when selecting a suitable mould material.

The moulds should have adequate stiffness to maintain specified tolerances conforming to shape, lines and dimensions as shown in the specification.

Due to the complexity of tailor-made steel moulds for precast concrete façade panels, it is normally considered economical to produce a single steel mould for the construction of 200 or more panels. However, other considerations mentioned above may govern the selection of steel for the use as a mould material.

The design of steel mould is critical because failure of which may lead to delay in programme and also wastage of precast products if it could not achieve the required workmanship and tolerances. Material quality and thicknesses, three-dimensional restraints, demoulding mechanisms, temperature effects are important considerations in designing good moulds.

3.2.2 Tolerances

Precast concrete units can be manufactured to comparatively close tolerances, although it should be appreciated that, as with insitu concrete, some dimensional variations are inevitable. Manufacturing tolerances should be specified for overall dimensions, thickness, bow, twist, flatness, squareness, size and location of openings and cast-in items. The mould tolerances should be compatible with the construction and erection tolerances specified in the specification in order to achieve an acceptable completed precast product.

Repetitive operations such as casting, concrete vibration, mould stripping and re-erection should not affect the mould dimensions beyond permissible tolerances. Regular surveys of the moulds should be made to ensure that they are still within acceptable limits.
As good practice, it is recommended that full re-checking of moulds for dimensional tolerance compliance be carried out after approximately 100 castings. More frequent checking may be advisable.

3.2.3 **Recesses, sleeves and boxouts**
These should be formed from suitable material. The shape, size and location should be identified on the precast unit shop drawings.

3.2.4 **Mould release agents**
Both suction and friction can be reduced by the use of high quality mould releasing agents. These releasing agents should be of a suitable type that will assist in demoulding of the precast unit without causing discolouration, adversely affecting the appearance of the surface finish or reducing the adhesion of subsequent finishes such as tiling. Their application and timing control should adhere strictly to the manufacturer’s recommendations.

3.3 **CAST-IN CONNECTIONS**
Where bars are provided with threaded ends for bolting or sleeve connection, a high degree of accuracy in their location is required. Templates should be used to fix threaded bars, bolts, inserts, sleeves and base plates during the production of precast units and cast insitu elements.

For complicated connections or connection systems which require very tight construction tolerances, mock-up elements should be prepared to ensure any construction difficulties are identified and solved prior to the commencement of mass production of precast units.

3.4 **LIFTING INSERTS**
3.4.1 **General**
Proprietary lifting inserts should comply with the design requirements of clause 2.7.5. Reinforcing bars should only be used as lifting eyes when they have been designed to act in that manner. The type of lifting eyes or inserts to be used on a particular project should be agreed between the manufacturer and the contractor/erector.

Lifting inserts should be firmly fixed to the mould in a manner that prevents them moving out of position during concrete placement. Puddling in face lift anchors after pouring of the concrete, while it is still in a plastic state, is a common and accepted technique. Anchors must be cast in at the correct height to accommodate the lifting clutch, hook or shackle that will be used to handle and erect the precast element.

Recess formers should be well maintained and must be compatible with the type of insert that is to be used.

Appendix C shows some good practices on lifting hooks and lifting beams for reference.

3.4.2 **Lifting position tolerances**
Recommended tolerances on the location of lifting devices for typical precast elements are given in table 3.1 below:

<table>
<thead>
<tr>
<th>Type of unit</th>
<th>Location on the unit</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile</td>
<td></td>
<td>150 mm</td>
</tr>
<tr>
<td>Floor slab</td>
<td></td>
<td>150 mm</td>
</tr>
<tr>
<td>Beam</td>
<td>Along the length</td>
<td>300 mm</td>
</tr>
<tr>
<td></td>
<td>Across the width</td>
<td>25 mm</td>
</tr>
<tr>
<td>Column</td>
<td>Along the length</td>
<td>300 mm</td>
</tr>
<tr>
<td></td>
<td>On the end</td>
<td>25 mm</td>
</tr>
<tr>
<td>Wall or façade panel</td>
<td>In the face in any direction</td>
<td>25 mm</td>
</tr>
<tr>
<td></td>
<td>On the edge across the thickness</td>
<td>5 mm</td>
</tr>
<tr>
<td></td>
<td>On the edge longitudinally</td>
<td>25 mm</td>
</tr>
</tbody>
</table>
3.5 SURFACE FINISHES

3.5.1 Types of finishes

Various types of finishes can be produced. The more common types are plain (off form) finishes, patterned finishes, tiled finishes and surface finishes treated by tooling, sand blasting or acid etching.

Prior to the commencement of mass production of precast units, trial units should be prepared so that the surface finish quality can be inspected, agreed and approved by all parties concerned. Often, several adjustments and improvements are necessary before the desired product finish is achieved.

3.5.2 Production

The quality of a concrete surface finish that can be achieved, is dependent on the properties and constituents of the concrete mix, the type of form material and releasing agent; the placing and compaction of the concrete; and the measures taken to cure the concrete.

3.5.3 Tiled finishes

Precast panels may have tiling added after casting, or frequently, where panels are cast flat, the tiling can be placed in the mould before the concrete is poured. Where tiling is added after the panels are cast, a thin bed tile adhesive is commonly used to attach the tiling. Any adhesive should be applied strictly in accordance with the manufacturer's instructions.

Mould releasing agents, curing compounds and the like can significantly reduce the adhesive bond between the tiles and the concrete, therefore care should be taken to ensure that these substances are removed from the concrete surface before the application of any adhesives.

Waterproofing agents are also known to reduce tile/concrete adhesion, and if these are present in the concrete, specialist advice must be sought.

Where tiling is placed directly in the mould, to preserve the joint appearance it is sometimes necessary to initially grout up the joints, and often a layer of adhesive is then applied to the back of the tiles before pouring the concrete. It is however, essential that the concrete is placed before the adhesive set commences thereby reducing the bond. This period is referred to as open time and is particularly critical when reinforcement has to be placed in the mould after adhesive application and prior to concrete placement.

3.6 PREFABRICATED METAL FRAMES

Prefabricated frames such as windows that are to be incorporated into the precast units should be manufactured in accordance with the appropriate standards.

As the frame surfaces may be damaged by fresh concrete, adequate protection should be provided. Where frames are to be cast in fresh concrete, the surface in direct contact with the concrete may have a protective coating if recommended by the supplier.

Prefabricated frames should be manufactured with suitable lugs on the face that is to be in contact with concrete to ensure proper bonding to the precast unit. Frames should be secured in such a way that they cannot move or deform in the mould during concrete placement.

3.7 PRE-CONCRETING CHECK

The following items should be checked prior to concreting:

- overall dimensions;
- squareness of corners and of edges;
- condition of side and base of mould;
- location of cast-in items including starter bars, dowels and lifting inserts etc, and support;
- location of reinforcement and support;
- concrete cover to reinforcement;
- boxouts for openings;
- provision for finishes;
• identification and marking;
• windows.

3.8 CONCRETE PLACING
Placing and compacting of fresh concrete should be carried out under proper supervision. Compaction should be thorough and care should be taken to avoid displacing reinforcement, tendon ducts and anchorages and cast-in items, and to avoid damage to the faces of the mould.

3.9 DEMOULDING AND LIFTING
Precast concrete elements should only be demoulded once the concrete has achieved sufficient strength to withstand the stresses due to the demoulding process and initial handling. Strength may be assessed by tests on cubes cured, as far as possible, under the same conditions as the concrete in the element being considered.

The minimum concrete strength at which precast elements can be lifted from the mould will be determined by the magnitude of the greater of the concrete stresses at the lifting points, the stresses caused by the transfer of prestressing forces or the stresses from handling.

For vertically cast panels, or elements cast on tilting moulds the flexural stresses may not always determine minimum concrete strengths required. In these situations the minimum strength of the concrete at initial lift may be governed by the required capacity of the lifting inserts.

The capacity of lifting inserts may be less than their rated capacity due to short embedment lengths, insufficient edge distances and/or low concrete strengths at the time of lifting. Higher strengths than those recommended in the table below may therefore be required to develop the capacity of some lifting inserts or for safe handling of the elements.

Table 3.2 – Recommended minimum concrete strengths for lifting and handling

<table>
<thead>
<tr>
<th>Application</th>
<th>Minimum concrete strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>None specified, fine controlled crane, non-prestressed</td>
<td>10 N/mm² *</td>
</tr>
<tr>
<td>Lifting which involves significant impact or high acceleration</td>
<td>15 N/mm² *</td>
</tr>
<tr>
<td>All units where concrete strength for lifting is specified in the specification</td>
<td>as specified</td>
</tr>
<tr>
<td>Concentrically prestressed elements (piles, wall panels or thin floor slabs)</td>
<td>20 N/mm²</td>
</tr>
<tr>
<td>Eccentrically prestressed elements (tees, deep flooring units)</td>
<td>25 N/mm²</td>
</tr>
<tr>
<td>Bridge beams and similar highly stressed prestressed elements</td>
<td>30 N/mm² or as specified</td>
</tr>
</tbody>
</table>
| *Dependent on anchor length or as recommended by insert manufacturer

With prestressed elements special care should be taken to ensure lifting devices are anchored in compression zones, unless covered by specific design.

Initial lifting should be made cautiously and gradually to overcome suction and friction without inducing sudden impact forces.

3.10 CURING
3.10.1 Normal curing
The method and duration of curing should be such that the concrete will have satisfactory durability and strength, and that the precast unit will not distort and will not cause undue cracking due to shrinkage. Suitable methods of curing include:

• delaying mould removal;
• covering the concrete surface with an impermeable sheet of material, such as polyethylene. The sheet should be well sealed and fastened;
• spraying the concrete surface with an efficient curing membrane;
• covering the concrete surface with a continuously damp absorbent material; or
• continuous or frequent applications of water to the surface, avoiding alternate wetting and drying or application of cold water to warm concrete surfaces.
Surfaces should normally be cured for a period of not less than 4 days.

3.10.2 Steam curing
Once the placement of concrete is complete, the concrete must be left for 4 hours without additional heating. With steam curing, the concrete temperature can then be raised at a maximum rate of 10°C per half hour. The concrete temperature should at no time exceed 70°C and the rate of subsequent cooling should not exceed the rate of heating.
Steam curing should be under a suitable enclosure such that the live steam can be retained. Steam jets should be positioned to allow free circulation of the steam around the surfaces of the members, and to avoid discharge directly onto the concrete or the test cubes.

3.11 HANDLING
The handling process encompasses the demoulding of the precast units, their loading and transportation to storage areas, offloading and storage, transfer to site and site erection.
To avoid excessive stresses and possible damage, all precast units should be handled in the manner as envisaged in their design by means of approved devices, identified in the production and erection drawings.
The techniques for handling precast units should aim for successful fabrication, delivery and installation without causing structural damage, detrimental cracking, architectural impairment or permanent distortion.

3.12 POST-CONCRETING CHECK
3.12.1 General
The size and shape of the precast units should be checked for compliance with the specification and that they are within specified tolerance limits. Other items should also be checked to ensure the units are acceptable for project use. They include checking that:
• connectors, sleeves, recesses and other features are in their correct location and were not misaligned or dislodged during concreting;
• construction joints have been formed as designed;
• reinforcement protruding from the element is the correct diameter and length and in the correct location;
• surfaces are free from cracks, hollow spot and unevenness, and exhibit no signs of grout loss, major chipping or misalignment of joints;
• earthing lugs when required provide full electrical continuity; and
• identification and marking is correctly attached.

It may be desirable to instigate 2 stages in the checking works:
• stage 1 immediately after demoulding to identify the repairable and non-repairable damages. The non-repairable elements are to be discarded.
• stage 2 post-repairs and post-finishing when the precast units are ready for dispatch.

3.12.2 Surface finish
3.12.2.1 Inspection
The surface of precast units should be inspected for defects and for the conformity with the specifications. The making good of surface defects may be permitted, subject to the approval of the
registered structural engineer, but the standard of acceptance should be appropriate to the type and quality of the finish specified.

3.12.2.2 Cracks

Precast units that have been adequately designed for the stresses due to serviceability effects and handling are generally free from cracks when correctly demoulded, transported and handled. However, sometimes cracks may occur as a result of difficulties in demoulding, rough handling, concrete shrinkage and improper concrete mix.

3.12.2.3 Repairs

Any defects found in a precast unit should be checked to ensure that the unit is still aesthetically and structurally acceptable for use after an appropriate repair is made.

The type of repair material and method depends on the pattern, extent of the defect and type of surface finish and should be agreed by all parties involved and approved by the registered structural engineer. The repair materials and method should be effective and acceptable in terms of achieving the required concrete strength and structural integrity as well as producing a texture and colour similar in appearance to the surrounding surface.

3.13 LIFTING EQUIPMENT AND ACCESSORIES

Lifting equipment such as mobile crane, gantry crane, forklift etc. must be carefully selected to ensure that lifting of precast units is carried out within the rated capacity of the equipment. The support for the lifting equipment must be checked to ensure that adequate supporting capacity is provided.

Lifting accessories may comprise combinations of lifting beams or frames, slings or cables, hooks or shackles. The selection of each of these components should be predetermined to take account of the forces exerted on them due to all aspects of the lifting operations. A person suitably qualified in accordance with the relevant regulations must regularly inspect all lifting equipment prior to and after use. Results of such inspections must be properly recorded and be available for subsequent inspection by the registered structural engineer upon request.

Some precast elements such as prestressed hollow-core floor slabs must be handled by means of lifting clamps, strops or slings as they may have no lifting inserts. Lifting equipment of this type may wear rapidly and therefore should be regularly inspected. The location of lifting points should be clearly indicated on the drawings.

3.14 FACTORY AND SITE STORAGE

Storage areas must be large enough so that the precast units can be stored safely, with adequate room for lifting equipment and transporting vehicles to manoeuvre. The ground of the storage area must be hard, level, clean and well drained to permit organised storage.

Precast elements can be damaged by incorrect stacking and storage. Where the locations of support points for a precast unit are critical the locations for the supports (dunnage) should be noted on the shop drawings.

Supports must be arranged to avoid twisting or distorting of the precast elements and must be adequate to transfer the weight of the stacked units to the ground without excessive settlement.

The stored and stacked units should be protected to prevent accidental damage and discolouration and the support material should be non-staining. Lifting points should also be well protected and kept accessible while the units are in storage.

Precast units must be stored safely with adequate supports such that it would not endanger any workers moving in the vicinity.
3.15 TRANSPORTATION

3.15.1 Delivery

Commonly precasting factories lie outside the Hong Kong SAR, in Guangdong province China, and in order to get the products to the construction site it is necessary for road and/or water transportation.

For transportation within China regional authority transportation requirements will need to be met and permits, where applicable, obtained. Within the Hong Kong SAR, transportation must comply with the appropriate regulations.

The precast units should have gained sufficient strength before being loaded for transportation.

3.15.2 Loading and storage on transporters

Precast units must be loaded carefully on to delivery vehicles to prevent damage. To protect the edges throughout their journey, proper devices should be used to support, secure and wedge the precast units. The units should be adequately secured and supported to prevent them from overturning, shifting or being damaged during transportation. Adequate non-staining cushioning should be provided between the unit and any securing chains, cables or ropes to prevent localised damage.

Precautions should also be taken to ensure that no undesirable stresses will be transmitted to the precast unit due to any flexing of truck or barge deck.

3.16 ERECTION

3.16.1 Erection preparation

Consideration should be given to the following items to ensure safe and efficient installation of the precast elements in accordance with the design intent:

- erection sequence;
- assembly and erection method;
- erection tolerances;
- rigging requirements;
- concrete strength or age requirements;
- permanent structural connection and joint details; and
- propping and temporary support details.

If the sequence of erection is critical to the structural stability of the structure, or for access to connections at certain locations, it should be noted on the drawings. The erection drawings, which should include all relevant information, should be prepared prior to the commencement of any erection.

3.16.2 Erection safety

Safety during the handling and erection of precast concrete elements is of paramount importance and compliance with the relevant current regulations is required.

All equipment used for the handling and erection of a precast element must be maintained to a high standard, load tested as necessary, and be suited to the intended use.

Consideration should also be given to the site environment particularly with regards to built up areas and implications this may have on erection safety.

3.16.3 Erection sequence

Precast elements should be erected in accordance with a pre-planned sequence as detailed in the erection drawings. This sequence of erection should be such that the multiple handling of elements is minimised. A trial erection operation should be considered to identify any unforeseen erection difficulties.

3.16.4 Missing or damaged lifting inserts

If missing, faulty or incorrectly located lifting inserts are identified, the designer should be contacted immediately to assess the problem and decide on an alternative lifting system.
It should be verified, where permanent fixings or connections are temporarily used during construction, that the fixings are suitable for the temporary use and their long-term performance will not be compromised.

3.16.5 Rigging
A rigging system for handling and erecting precast elements requires careful and thorough pre-planning. Special care must be taken with rigging arrangements where unequal lifting loading has been incorporated in the panel design.

It may be necessary to check the centre of gravity during lifting, in order to ensure a stable and balance manner to facilitate installation operation.

The loadings at different lifting points may be different. It is common to use chain slings for lifting. Careful design the required length of the chain slings for different lifting points to ensure proper tightening and no slack during lifting operation.

Refer to Appendix C for details of lifting hook for semi-precast slab and typical lifting beam for precast façade.

3.16.6 Temporary bracing and supporting structures
Precast concrete elements must be adequately braced and supported during all phases of erection to ensure proper alignment and structural integrity until permanent structural connections have been completed.

The design of temporary bracing and supporting structures should comply with clause 2.7.6. The installation and erection is to be in accordance with the approved drawings and checked by a competent person as set out in the project’s Site Safety Supervision Plan.

Wherever possible bracing should be fixed to the element before lifting. When it is necessary to attach the braces after the element has been positioned, the element should not be detached from the crane until the braces have been installed.

Bracing bolts should be checked at regular intervals to ensure that they are secure and undamaged.

3.16.7 Levelling shims
Levelling shims should be formed from a suitably durable material and should have adequate strength to carry the full imposed loads. Direct concrete to concrete, or concrete to steel bearing should be avoided.

Levelling shims carry the full construction load of the precast element and must provide adequate support to prevent movement until the element is incorporated in the main structure. Levelling shims must therefore be used on a solid foundation. It is recommended that levelling shims are not placed on thin layers of site concrete.

Shimming should not exceed a height of 30 mm unless steps are taken to ensure stability of the temporary support.

Where possible, shims for levelling precast elements should be located at least 300 mm from the ends of the element. This is relevant where edge break-out can occur if shims are placed close to bottom corners, such as for thin wall panels.

If steel shims are used they must be removed before the final grouting up of the joint.

3.16.8 Propping
All temporary propping requirements must be shown on the erection drawings. The design of temporary propping systems should be in accordance with clause 2.7.4. Consideration should be given to the following:

• propping that supports beams should accommodate possible changes to the distribution of loads during the construction process;
• the seating of precast beams may not be adequate to transfer high loads during construction and precast beams will normally require full propping at each end;
• if the structural design requires beams to be supported without the use of mid-span props (to reduce the end support dead load bending moments) this requirement must be clearly noted on both the contract drawings and the precast layout drawings;
• where beams have floor systems placed on them prior to the beams being fully built into the structure, the beams may not be evenly loaded by the floor units during construction. Long span floor units placed on one side only of a beam may cause the beam to roll on the props. In such circumstances each edge of the beam may require separate temporary propping;
• all temporary propping should be in place, adjusted to the correct levels allowing for any required cambers, and fully braced prior to commencement of erection of any precast beams, unless specific provision has been made to do otherwise;
• temporary propping should provide full support for all construction loads including the full self weight of the completed floor system and possible local concentrations of load during construction, unless specifically noted otherwise;
• required duration of propping time and sequence of de-propping;
• all temporary propping should be in place, adjusted to the correct levels allowing for any required cambers, and fully braced prior to commencement of erection of any floor units, unless specifically noted otherwise; and
• props should be vertical and braced to prevent side-sway of the whole assembly and the buckling of individual props.

3.16.9 Cleansing to semi-precast slab
Cleansing and crack inspection before placing insitu concrete topping include:

(1) Remove all laitance, loose materials, dirt and grease from the top surface of the precast slab by using water jet with a minimum pressure of 10,000kPa (100bar) for cleansing;
(2) After water-jet cleansing, check for cracks at the underside of the semi-precast slab;
(3) Repair any through cracks identified before placing insitu concrete topping to the semi-precast slabs.

3.17 TOLERANCES
The tolerances which can be achieved in practice depend on a number of factors including:

(1) unit shape, particularly the effect on the stiffness of the mould;
(2) mould materials and the method of mould assembly;
(3) number of castings from each mould;
(4) position and shape of any projections; and
(5) method of installation.

Production and erection tolerances are given below as a general guide to the accuracy that can be achieved by normal production methods. In any case, the final construction tolerance of precast concrete construction should not more than the construction tolerances stated in the Code of Practice for Structural Use of Concrete (i.e. Construction Tolerance ≥ Production Tolerance + Erection Tolerance)

3.17.1 Production tolerance for precast concrete components

3.17.1.1 All elements (unless otherwise specified)

1. Length up to 2000 mm: ...±6 mm
2. Width or height up to 250 mm: ..±4 mm
3. Thickness or depth up to 500 mm: ..±6 mm

3.17.1.2 Façade and wall units

(a) Deviations from Design Dimensions

Manufacture the façade and precast concrete wall units within the dimensional tolerances set out below:
1. Length and height:
 a. Up to 2 m: ±3 mm
 b. 2 m to 3 m: ±6 mm
 c. 3 m to 4.5 m: ±9 mm
 d. 4.5 m to 6 m or more: +10 mm : -12 mm

2. Thickness:
 a. Up to 500 mm: +6 mm : -3 mm
 b. 500 mm to 750 mm: +8 mm : -5 mm

3. Straightness or bow (deviation from intended line):
 a. Up to 3 m: 6 mm
 b. 3 m to 6 m: 9 mm
 c. 6 m to 12 m: 12 mm

(b) Squareness

When assessing the squareness of a corner:

1. Take the longer of the two adjacent sides being checked as the base-line;

2. Ensure that the shorter side does not vary in its distance from a perpendicular so that the difference between the greatest and shortest dimensions exceeds:
 Length of shorter side:
 a. Up to and including 1000 mm: 3 mm
 b. Over 1000 mm to 2000 mm: 5 mm
 c. Over 2000 mm: 6 mm

(c) Twist

Ensure that no corner is more than the dimension stated from the plane containing the other three corners:

1. Up to and including 3m: 6 mm
2. Over 3m to 6m: 9 mm
3. Over 6m to 12m: 12 mm

(d) Position of Cast-in Window Frames

Permissible deviation from design dimensions on plan: ±6 mm

3.17.2 Erection tolerance for precast concrete components

3.17.2.1 All elements (unless otherwise specified)

After erection of the precast component, the construction tolerance shall well within the construction tolerances stipulated in Code of Practice for Structural Use of Concrete.

3.17.2.2 Precast façade and precast wall units

Install the facade and precast concrete wall units within the erection tolerances set out below:

1. Position on plan: In x and y directions: ±5 mm
2. Verticality: per element: ±6 mm
3. Width of joint: On a nominal joint of 20 mm: ±5 mm
 a. In addition, respect the prescribed dimensions for height, width and length, of the completed building to within 0.1%
b. Respect the theoretical line, both horizontal and vertical, with the same tolerance of 0.1%, for each storey when seen from the front. Deviations in profile must not exceed ±10 mm.

3.17.2.3 Stairs (flight from landing to landing)

(a) Position on Plan

Permissible deviation on plan of any point in relation to the nearest reference point at the same level, the distance between the points being not more than 15m: .. ±10 mm

(b) Length

Length on plan of clear span (excluding landings) ... ±12 mm

(c) Width of Flight .. ±6 mm

(d) Height

Vertical height measured between either top surfaces or soffit surfaces of any flight of stairs: .. ±10 mm

(e) Waist Thickness

Thickness of waist measured at right angles to the slope of the flight: +6 mm: -3 mm

(f) Rise

Difference in the rise of two consecutive steps: ... ±5 mm

(g) Going

Difference in width of tread of two consecutive steps: .. ±8 mm

(h) Tread Level

Difference in level of tread:

1. Across the going: ... ±4 mm
2. Across width of stair: ... ±5 mm

3.17.3 Volumetric precast concrete components

3.17.3.1 Position on Plan

Permissible deviation on plan of any point measured from the nearest building grid line: ... ±15 mm

3.17.3.2 Length and Width

a. ≤15 m: ... ±25 mm

b. >15 m ≤30 m: ... ±25 mm

c. Each subsequent 30 m: ... ±20 mm

Note: Measure dimensions at lowest floor level or, if not practicable, as otherwise specified or agreed.
3.17.3.3 Height

To structural roof level with reference to the Transferred Bench Mark (TBM):

a. \(\leq 30 \text{ m} \): \(\pm 40 \text{ mm} \)
b. Each subsequent 30 m: \(\pm 15 \text{ mm} \)

3.17.3.4 Verticality of Wall and Columns

a. Plumbness in height \(\leq 500 \text{ mm} \): \(\pm 10 \text{ mm} \)
b. Ditto \(>500 \text{ mm} \) \(\leq 3000 \text{ mm} \): \(\pm 15 \text{ mm} \)
c. Ditto \(>3000 \text{ mm} \) \(\leq 30 \text{ m} \): \(\pm 20 \text{ mm} \)
d. \(>30 \text{ m} \): \(\pm 20 \text{ mm} \) per 30 m to the nearest 5 mm

Note: When separated by another plane or member use the thickness of the plane or member for checking verticality.

3.17.3.5 Surface Profile of Walls and Slab Soffits

Permissible deviation from mean of surface profile across the whole element (from extremities):

a. Surface profile \(\leq 3000 \text{ mm} \): \(\pm 10 \text{ mm} \)
b. Ditto \(>3000 \text{ mm} \) \(\leq 15 \text{ m} \): \(\pm 15 \text{ mm} \)
c. Ditto \(>15 \text{ m} \): \(\pm 20 \text{ mm} \)

Note: Measure deviations in two directions.

3.17.3.6 Twist

The distance of any one corner from the plane containing the other three corners, i.e., a variation from the target plane:

a. For diagonal \(\leq 15 \text{ m} \): \(20 \text{ mm} \)
b. For each further 10 m of diagonal: \(10 \text{ mm} \)

3.17.3.7 Squareness of Corners

Where the longer of two adjacent sides is taken as the base line and the permissible deviation of the shorter side, from a perpendicular to the base line, is related to the length of the shorter side:

a. Short side \(\leq 3000 \text{ mm} \): \(\pm 20 \text{ mm} \)
b. Short side for every additional 2500 mm (to nearest 5 mm): \(20 \text{ mm} \times L/3 \)

3.17.3.8 Level

Permissible deviation from designed level with reference to the nearest Transferred Bench Mark (TBM) of the upper or lower surface, as may be specified of any slab or other element or component:

a. Length \(\leq 8 \text{ m} \): \(\pm 10 \text{ mm} \)
b. Length \(>8 \text{ m} \) \(\leq 15 \text{ m} \): \(\pm 15 \text{ mm} \)
c. Length \(>15 \text{ m} \) \(\leq 30 \text{ m} \): \(\pm 20 \text{ mm} \)

40
4 QUALITY CONTROL
4.1 FACTORY
4.1.1 General
A factory selected for the casting of units must ensure that the precast units are manufactured under a Quality Assurance Scheme certified under ISO 9001 covering the following items:
- quality control tests of materials, including proprietary products such as lifting anchors for handling precast concrete components;
- calibration of laboratory equipment for quality control tests;
- production process;
- efficiency and proper operation of equipment at the casting yard;
- sampling/testing procedures and requirements;
- frequency and extent of inspection by in-house staff and independent parties; and
- frequency and extent of audit by in-house staff and independent parties.

The factory and contractor are responsible for maintaining the quality of the manufacturing process for the precast units. The precast concrete elements should be manufactured by a factory with ISO 9001 quality assurance certification. The contractor should provide continuous supervision of the precast concrete production works in the factory, as well as qualified supervision for the fabrication, erection and examination of precast concrete elements.

The authorised person/registered structural engineer must satisfy himself that the precast concrete units have been constructed in accordance with the approved drawings and specification. The registered structural engineer and his team of supervisory personnel should provide qualified supervision for the fabrication, erection and examination of precast concrete elements. Should more stringent control be considered necessary, the authorized person/registered structural engineer may step up the supervisory and testing requirements.

Rigorous quality control procedures must be maintained at the precasting factory at all times to ensure that the precast elements are constructed in accordance with the Building (Construction) Regulations and specification.

Upon leaving the precasting factory all precast units or batch of units must carry documentation certified by the factory stating that the units have been manufactured under a certified Quality Assurance Scheme and in accordance with the specification.

Precast units produced and handled by a quality assured factory shall be fully traceable. Serial number, casting date, concrete grade, reinforcement details, final locations and delivery order/invoice should be documented. The date of manufacture together with the serial number shall be marked on each precast unit. Manufacturer may install radio frequency identification (RFID) tags to the respective precast unit to record the manufacturing process, the logistics in delivery and the installation details of the precast unit, etc.

Clauses 3.2 and 3.9 provide guidelines in respect of quality control on moulds, demoulding and lifting respectively. Reference shall be made to clauses 3.11 and 3.14 for quality control on handling and/or storage of cast units.

4.1.2 Testing standards
4.1.2.1 Concrete
Sampling and testing of concrete should comply with the Building (Construction) Regulations and as required by the specification in accordance with Construction Standard CS1 or similar approved. The testing is to be undertaken by a laboratory accredited under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) or other laboratory accreditation bodies which have reached mutual recognition agreements/arrangements with the HOKLAS.

4.1.2.2 Reinforcement
Sampling and testing of reinforcement should comply with the Building (Construction) Regulations and in accordance with Construction Standard CS2 or similar approved. The testing is to be undertaken by a laboratory accredited under HOKLAS or other laboratory accreditation bodies which have reached mutual recognition agreements/arrangements with the HOKLAS.
4.1.2.3 **Structural Grouting**

All grout should be prepared, applied in accordance with the manufacturer's specification and requirements and tested in accordance with Construction Standard CS1 by a laboratory accredited under HOKLAS or other laboratory accreditation bodies which have reached mutual recognition agreements/arrangements with the HOKLAS. The strength of 100 mm cubes of grout must not be less than the grade strength of the adjoining concrete.

4.2 **SITE**

Receiving, lifting, storage and erection at the construction site should be undertaken in accordance with an accredited site Quality Assurance Scheme.

The following items should form part of the site checking for acceptance of the precast elements:

- **Structural integrity**
 Although quality control checks are carried out for the precast units at the factory, there is a possibility of damage during handling and transportation. As the precast units are received on site they should be visually inspected for any signs of structural defect.

- **Dimensional tolerance**
 Dimensional tolerances of the precast units as received on site should comply with the specification. See clause 3.17 for guidance on production tolerances.

 Changes to the dimensions and shapes of units should be identified and assessed with regard to the overall tolerance; and

- **Surface finish**
 The surface finishes of precast units when received on site should be checked for compliance with the requirements of the specification.

4.3 **SPECIAL TESTING**

4.3.1 **Watertightness testing of external precast façade panels**

4.3.1.1 **General**

For facade units not connected monolithically to in-situ concrete, it is required to demonstrate that the joints are adequate to resist water penetration. Water penetration test on a full scale mock-up panel including joint could be undertaken. The recommended testing procedure is outlined in clauses 4.3.1.2 to 4.3.1.5.

4.3.1.2 **Test procedures**

Mock-up panels to be tested for watertightness should be subjected to both static and cyclic pressure in accordance with relevant international standards [e.g., ASTM E331-00 (2009) and ASTM E547-00(2009) respectively]. These testing procedures are to be modified for local conditions as follow:

- differential test pressure shall be 20% of the maximum inward design wind load but not less than 0.77 kPa; and

- the test shall be performed with water flow rate of 3.4 litres/min/m² for 15 minutes.

4.3.1.3 **Sampling for water penetration test**

Full scale watertightness testing on precast façade panels and joints should be carried out at the rate of 0.5% for each type of joint and combination of panels or one for each type of joint and precast unit, whichever is the greater.

4.3.1.4 **Failure criterion**

The façade units or joints are deemed to have failed if signs of water seepage through the joints or through the façade unit, including signs of damp patches, are observed during the test or within the subsequent 2 hours after the test.
4.3.1.5 Remedial action

Upon failure of a water penetration test on a precast façade system the cause of failure should be identified and the system revised and re-tested until a satisfactory test result is achieved.

For any one facade unit fails the watertightness test, additional tests shall be required with sampling rate determined by the registered structural engineer.

4.3.2 Load testing

When supervision indicates poor workmanship or where there are visible defects particularly at critical sections, tests to determine the structural integrity, concrete strength and quality of materials may be carried out to determine the acceptability of the product or the batch of products. The testing method should be specific and capable of collecting relevant information to verify the acceptability of the product.

In certain cases, it may be necessary to devise specific tests to demonstrate the structural integrity of the precast unit. In this circumstance, such testing method should be relevant and agreed with the registered structural engineer prior to conducting the test.

4.3.3 Tiled finishes

Performance testing should be carried out on a number of trial panels at the precasting yard, to demonstrate the method and materials used for fixing the tiles will be satisfactory in service.

There should be no hollow sounding areas behind the tiles when the surface is tapped with a light hammer or coin.

Pull off tests may be required on selected areas of tiling.

A cover meter survey of reinforcement beneath the tiled finish should be made to ensure adequate cover to reinforcement has been provided.

The number of trial panels, the number and nature of tests, and the acceptance values should be specified and agreed before manufacture.

Acceptance testing on production panels should be carried out at an appropriate time, to avoid the erection of panels with unacceptable finishes. Any of the recommended testing may be employed, but it should be noted that pull off testing is destructive, and the tested area cannot easily be repaired to the original appearance.
Reference:

This Code of Practice incorporates provisions specified in the following documents. These documents are referred to at the appropriate parts of the text. For dated references, if any, subsequent amendments or revisions do not apply. For undated references, the latest edition of the publication applies.

Hong Kong Building (Construction) Regulations
Code of Practice for Structural Use of Concrete 2013
Code of Practice for Fire Safety in Building 2011
Structures Design Manual for Highways and Railways
Code of Practice on Wind Effects in Hong Kong 2004
Code of Practice for Dead and Imposed Loads 2011.
Appendix A

Connection Details
(i) Column to Base
and
Column to Column
COLUMN—TO—BASE CONNECTIONS

(a) SOCKET CONNECTION
1. PRECAST COLUMN
2. NON-SHRINK GROUT IN POCKET
3. NON-COMPRESSIBLE LEVELLING PAD

(b) BOLTED CONNECTION
1. PRECAST COLUMN
2. MAIN REINFORCEMENT
3. ANCHOR NUT ABOVE LEVELLING NUT BELOW
4. DRY-PACK MORTAR
5. STEEL BASE PLATE WELDED TO MAIN REINFORCEMENT ABOVE AND BELOW THE PLATE
6. CAST-IN BOLTS
7. NON-COMPRESSIBLE LEVELLING PAD

(c) DOWELLED CONNECTION
1. PRECAST COLUMN WITH DOWEL POCKETS
2. NON-COMPRESSIBLE LEVELLING PAD
3. DOWELS CAST IN BASE
4. GROUT
5. GROUT STOP

NOTE: MAIN REINFORCEMENT NOT SHOWN

(FIGURE A1)
VERTICAL SECTION

1. PRECAST R.C. COLUMN (LOWER PART)
2. PRECAST R.C. COLUMN (UPPER PART)
3. NUTS AND WASHERS
4. IN-SITU CONCRETE
5. STEEL PLATE
6. WELD

* CRITICAL ZONE - REFER TO CODE OF PRACTICE FOR STRUCTURAL USE OF CONCRETE 2013

SECTION 1-1

COLUMN TO COLUMN CONNECTION

(FIGURE A2)
VERTICAL SECTION

1. PRECAST R.C. COLUMN (LOWER PART)
2. LEVELLING PAD
3. PRECAST R.C. COLUMN (UPPER PART)
4. STEEL ANGLE
5. IN-SITU CONCRETE

* CRITICAL ZONE – REFER TO CODE OF PRACTICE FOR STRUCTURAL USE OF CONCRETE 2013

SECTION 1-1

COLUMN TO COLUMN CONNECTION

(FIGURE A3)
(ii) Wall to Wall
TYPICAL LOADBEARING WALL HORIZONTAL CONNECTIONS

(Note: Panel reinforcement not shown for clarity)

(a) TYPICAL PANEL (FOR SLAB)

(b) HEAVY-DUTY PANEL (FOR BEAM)

(FIGURE A4)
PLAN
1. JOINT REBAR
2. ADDITIONAL REINFORCEMENT (U-BARS)
3. STEEL MESH FOR WALL
4. SPACE BAR
5. EDGE CASTELLATION
6. PROJECT REINFORCEMENT BARS FROM WALL PANEL
7. IN SITU CONCRETE

ELEVATION

TYPICAL LOAD BEARING WALL VERTICAL CONNECTION
(LOAD BEARING WALL WITHOUT SHEAR TRANSFER)

(FIGURE A5)
WALL TO WALL HORIZONTAL CONNECTION
(CAPABLE OF FUNCTIONING AS SHEAR WALL)
(FIGURE A6)
SECTION A-A

WALL TO WALL HORIZONTAL CONNECTION
(CAPABLE OF FUNCTIONING AS SHEAR WALL)
(FIGURE A7)
(iii) Beam to Column Moment Connection
ISOMETRIC VIEW

1. PRECAST COLUMN
2. IN SITU CONCRETE
3. PRECAST BEAM

SECTION 1-1

BEAM TO COLUMN CONNECTION

(Figure A8)
COLUMN AND BEAM CONNECTION

1. MECHANICAL SPlice
2. SHIM AND GROUT
3. PRECAST CONCRETE BEAM END
4. REINFORCED ERECTION CORBEL

(Figure A9)
COLUMN AND BEAM CONNECTION

1. PRECAST COLUMN
2. PRECAST BEAM
3. WELD TOP & BOT. REINFORCEMENT
4. CAST IN-SITU CONCRETE

(FIGURE A10)

CRITICAL ZONE

REFER TO CODE OF PRACTICE FOR STRUCTURAL USE OF CONCRETE 2013
(iv) Beam to Column
Simply Supported
COLUMN/BEAM CONNECTION WITH IN-SITU JOINTING AND LOOPED BARS

(FIGURE A11)
VERTICAL SECTION

1. COLUMN WITH CAST-IN STEEL PLATE AND PROTRUDING DOWELS AT THE TOP.
2. REINFORCED NEOPRENE RUBBER BEARING.
3. BEAM WITH DOWEL HOLES.
4. GROUTED DOWEL-HOLE CONNECTION.
5. DOWEL BAR

SECTION 1-1

COLUMN/BEAM CONNECTION WITH VERTICAL DOWEL BARS

(FIGURE A12)
(v) Beam to Beam
1. MAIN BEAM
2. SECONDARY BEAM
3. DOWEL PROTRUDING FROM BEAM
4. GROUTED DOWEL-HOLE CONNECTION

SECONDARY BEAM SIMPLY SUPPORTED ON MAIN BEAM
(HALF-JOINT CONNECTION)

(FIGURE A13)
SECTION 1-1

1. MAIN BEAM WITH ANCHOR INSERTS AT THE TOP
2. SECONDARY BEAM OR PURLIN WITH PROTRUDING STIRRUPS
3. DOWEL SCREWED INTO INSERT
4. STIRRUP-DOWEL CONNECTION
5. CAST IN-SITU JOINT

SECONDARY BEAM SIMPLY SUPPORTED ON MAIN BEAM

(FIGURE A14)
(vi) Beam / Slab to Wall
HORIZONTAL WALL JOINTS
CONNECTION SUPPORTING FLOOR SLABS

(FIGURE A15)
(vii) Semi-Precast Construction Details
DETAIL A * TYPICAL DETAILS AT JOINT BETWEEN WALL AND PRECAST PLANK

DETAIL B * TYPICAL DETAILS AT JOINT BETWEEN PRECAST FACADE AND PRECAST PLANK

DETAIL C * TYPICAL DETAILS AT JOINT BETWEEN PRECAST PLANKS

DETAIL D * TYPICAL DETAILS AT JOINT BETWEEN PRECAST PLANK AND BEAM

LEGEND: ↑ PROPPING

(REINFORCEMENT NOT SHOWN FOR CLARITY)

(FIGURE A17)
Appendix B

Precast concrete Facade

Typical Details
1. CAST-IN SOCKET
2. TIE & STRUT BRACE
3. ANGLE BRACKET
4. CHANNEL BRACKET
5. BOLTS FIXING
6. THROUGH BOLT

TEMPORARY SUPPORT FOR PANEL WALL

TEMPORARY SUPPORT FOR PANEL WALL WITH OPENING

(FIGURE B1)
TYPICAL DETAILS OF PRECAST BAY WINDOW

(NOTE: RE-BAR DETAILS FOR REFERENCE ONLY)

(FIGURE B2)
SECTION 2–2
(NOTE: RE-BAR DETAILS FOR REFERENCE ONLY)
1. IN-SITU WALL
2. R.C. BEAM
3. T10–200 U.B.
4. R.C. BEAM
5. 2T12 T&B
6. T10–200 U.B.
7. T10–200 U.B.
8. IN-SITU COLUMN

SECTION 3–3
(NOTE: RE-BAR DETAILS FOR REFERENCE ONLY)
1. IN-SITU WALL
2. 2T16 T&B
3. T10–200 T&B
4. T10 T&B
5. T10–200 U.B.
6. T10–200 U.B.
7. IN-SITU COLUMN

DETAIL A

1. SEALANT WITH BOND BREAKER OR BACKING ROD
2. NON-SHRINK CEMENT GROUT
3. IN-SITU BEAM/SLAB.

DETAIL A

(FIGURE B3)
1. PRECAST FACADE AT UPPER FLOOR
2. REINFORCEMENT BARS OF PRECAST PANEL
3. PREFORMED PVC CLOSE FITTING DOWEL BAR
4. STEEL U-BAR
5. DOWEL BAR
6. RECESS FILLED WITH NON-SHRINK GROUT
7. LOWER FLOOR PRECAST FACADE
8. IN-SITU BEAM/SLAB.

SECTION X-X
1. DOWEL BAR
2. STEEL U-BAR

CONNECTION DETAILS BETWEEN UPPER PRECAST FACADE & LOWER PRECAST FACADE WITH DOWEL BAR FOR WIND RESISTANCE

(FIGURE B4)
Appendix C
Lifting Device Typical Details