Code of Practice for Structural Use of Concrete 2013

The Buildings Department (BD) has set up a Technical Committee (TC) to, among others, collect and consider the views and feedback from the building industry arising from the use of the Code of Practice for Structural Use of Concrete 2013 (Concrete Code 2013). The current Concrete Code 2013 (2020 Edition), which was promulgated in December 2020, incorporated the amendments made and promulgated through circular letters dated 13 June 2017 and 24 November 2020. Taking into account the advice of the TC, the following amendments to the Concrete Code 2013 (2020 Edition) have been promulgated and uploaded to BD website www.bd.gov.hk:

- (a) Appendix A February 2022;
- (b) Appendix B June 2023; and
- (c) Appendix C April 2024.

(YU Po-mei, Clarice) Building Authority

Ref.: BD GR/1-50/76

This PNAP is previously known as PNAP 296 First issue June 2007 Last revision June 2023 This revision April 2024 (AD/NB2) (Paragraph 1 amended, and Appendix C added)

Appendix A (PNAP APP-142)

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition)

(February 2022)

(6/2023)

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition) in February 2022 included:

- (a) clause 6.2.3 and Figure 6.18b addition of design requirements for plain concrete linings;
- (b) clause 10.3.4.2 and Table 10.2 revision of the requirements on the use of 100 mm and 150 mm concrete cubes;
- (c) clause 11.7.5.4 and Table 11.2 addition of general guidelines on monitoring early compressive strength of insitu concrete by maturity method; and
- (d) Annex A addition of ASTM C1074-19^{ϵ 1} corresponding to the new clause 11.7.5.4.

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition)

Item	Current version	Amendments
1. Contents	6.2.2 Walls	6.2.2Walls6.2.3Plain concrete linings
2. LIST OF TABLES ¹	Table 11.1 – Objects of production and construction control Table 12.1 – Design flexural tensile stresses for class 2 members: serviceability limit state: cracking	Table 11.1 – Objects of production and construction controlTable 11.2 – Correction factor applied to the estimated insitu concrete compressive strengthTable 12.1 – Design flexural tensile stresses for class 2 members: serviceability limit state: cracking
3. LIST OF FIGURES ²	Figure 6.18a - Geometry of the Circular Section Figure 6.19 - Critical section for shear check in a pile cap	 Figure 6.18a - Geometry of the Circular Section Figure 6.18b - Interaction Curve for Design of Plain Concrete Lining Figure 6.19 - Critical section for shear check in a pile cap
4. Clause 6.2.3 and Figure 6.18b		 6.2.3 Plain concrete linings 6.2.3.1 General Plain concrete is suitable for use in structural members with high axial loads and relatively low bending moments. The following criteria can generally be applied to the use of plain concrete lining in tunnels or caverns: (a) the lining curvature is adequate to accommodate axial distribution of external loads; (b) the plain concrete lining is constructed in relatively good rock geology and is always in compression under all load combinations; (c) the effect of imperfection of the concrete lining has been considered by means of rigorous structural analysis of the plain concrete lining; and

Addition of Table 11.2 corresponding to the new clause 11.7.5.4.
 Addition of Figure 6.18b corresponding to the new clause 6.2.3.

Item	Current version	Amendments
		(d) an arch section can be formed by plain concrete in conjunction with a reinforced concrete invert provided the junction between the plain and reinforced concrete satisfies the design requirements specified in clause 6.2.3.2.
		6.2.3.2 Design of plain concrete lining (a) Maximum axial load for plain concrete lining The design ultimate capacity of axial load per unit length, n_{LT} and design maximum ultimate bending moment per unit length, m_{LT} (= n_{LT} e_{χ}) shall be evaluated using the interaction curve as shown in Figure 6.18b.
		(i) The first section (Point 1 to Point 2) of the interaction curve as shown in Figure 6.18b, the highest axial force, is applicable when the eccentricity of the thrust force is less than or equal to 0.1h. The ultimate capacity is calculated using a rectangular stress block over the whole section; For $e_x \le 0.1$ h $n_{LT} \le 0.32$ hf _{cu} 6.63a
		(ii) The second section (Point 2 to Point 3) of the interaction diagram is based on a rectangular stress block approach and is applicable for eccentricity between 0.1h and 0.3h. The stress block is acting over part of the section, and reduces as the eccentricity increases. For $0.1h < e_x \le 0.3h$ $n_{LT} \le 0.4$ (h-2 e_x) f_{cu} 6.63b
		where:

Item	Current version	Amendments
		e_x is the resultant eccentricity of load at right angles to the plan of the lining.
		(iii) Cracking restriction limits the use of the strength design method to a maximum eccentricity of 0.3h. The third section (Point 3 to Point 4) of the interaction curve is a straight line down to the point $n_{LT} = 0$, $m_{LT} = 0$, as shown in Figure 6.18b.
		Point 1 Point 2
		Axial Load, n _{LT} (kN/m) bound a bound
		Point 4 Bending Moment, m_{LT} (kNm/m)
		Figure 6.18b – Interaction Curve for Design of Plain Concrete Lining

Item	Current version	Amendments
		 (b) Shear strength The design shear stress in the plain concrete lining subjected to shear and axial compression without shear reinforcement can be calculated in accordance with clause 6.1.2.5(k). The design shear resistance of plain concrete lining can be checked in accordance with clause 6.2.2.3(r).
5. Clause 10.3.4.2(a)	 10.3.4.2 Concrete Cube Tests During Construction (a) Concrete Cubes The compressive strength of concrete shall be determined by testing 100 mm or 150 mm cubes 28 days after mixing. A representative sample shall be taken from fresh concrete to make test cubes and each sample shall be taken from a single batch. The rate of sampling shall be at least that specified in Table 10.1 and at least one sample shall be taken from each grade of concrete produced on any one day. 	 10.3.4.2 Concrete Cube Tests During Construction (a) Concrete Cubes The compressive strength of concrete shall be determined by testing 100 mm cubes, or 150 mm cubes if the maximum aggregate size of concrete exceeds 20 mm, 28 days after mixing. A representative sample shall be taken from fresh concrete to make test cubes and each sample shall be taken from a single batch. The rate of sampling shall be at least that specified in Table 10.1 and at least one sample shall be taken from each grade of concrete produced on any one day.

	Item	Current version								Amendments	
6.	Table 10.2			1		1					
		Specified	Compliance	Colu	mn A	Colu	ımn B	Specified	Compliance	Column A	Column B
		Grade Strength	Criteria	consecu results sh the specif	ge of 4 ative test all exceed fied grade by at least	result sl less tl specifi	vidual test nall not be han the ed grade th minus	Grade Strength	Criteria	Average of 4 consecutive test results shall exceed the specified grade strength by at least	Any individual test result shall not be less than the specified grade strength minus
				150 mm Cubes	100 mm Cubes	150 mm Cubes	100 mm Cubes			100 mm Cubes (150 mm Cubes)	100 mm Cubes (150 mm Cubes)
		C20 and	C1	5 MPa	7 MPa	3 MPa	2 MPa	C20 and above	C1	<mark>7 MPa</mark> (5 MPa)	<mark>2 MPa</mark> (3 MPa)
		above	C2	3 MPa	5 MPa	3 MPa	2 MPa		C2	5 MPa	$\frac{2}{2}$ MPa
		Below	C1 or C2	2 MPa	3 MPa	2 MPa	2 MPa			(3 MPa)	<mark>(3 MPa)</mark>
		C20	10.2 - Compressi	vo Strong	th Com	lionoo Cr		Below C20	C1 or C2	<mark>3 MPa</mark> (2 MPa)	<mark>2 MPa</mark> (2 MPa)
			- compressi	ve Streng	gui Comp		iteria		2 - Compressi	ve Strength Compliand	
7.	Clause 10.3.4.2(b) (i)	 (i) Before 40 test results are available, where there is sufficient previous production data using similar materials from the same plant under similar supervision to establish that the standard deviation of 40 test results is less than 5 MPa for 150 mm test cubes or 5.5 MPa for 100 mm test cubes, compliance requirement C2 may be adopted; otherwise compliance requirement C1 shall be adopted. 					ng similar supervision test results .5 MPa for C2 may be	previe plant devia 150 r	ous productio under simila tion of 40 tes nm cubes), co	ults are available, when n data using similar ma r supervision to estable t results is less than to compliance requirement nce requirement C1 sha	aterials from the same lish that the standard 5.5 MPa (5 MPa for t C2 may be adopted;
8.	Clause 10.3.4.2(b) (ii)	conse requir 150 n comp shall	re the calculat ecutive test rest rement C2 of nm test cubes liance requir be changed f ng the last pai	sults of co of Table s or 5.5 f ement fo from C2	oncrete ju 10.2 ex MPa for or check: to C1 or	dged by c cceeds 5 100 mm ing the t n the 35 th	compliance MPa for test cubes, test results day after	conse requir 150 n result	ecutive test r rement C2 of nm cubes), co is shall be ch	ated standard deviation results of concrete junct Table 10.2 exceeds compliance requirement anged from C2 to C1 in of test cubes in the se	dged by compliance 5.5 MPa (5 MPa for a for checking the test on the 35 th day after

Item	Current version	Amendments
9. Clause 10.3.4.2(b) (iii)	 (iii) Where the calculated standard deviation of 40 previous consecutive test results is less than 5 MPa for 150 mm test cubes or 5.5 MPa for 100 mm test cubes, compliance requirement shall be changed from C1 to C2 on the 35th day after making the last pair of test cubes in the set of 40. 	 (iii) Where the calculated standard deviation of 40 previous consecutive test results is less than 5.5 MPa (5 MPa for 150 mm cubes), compliance requirement shall be changed from C1 to C2 on the 35th day after making the last pair of test cubes in the set of 40.
10. Clause 10.3.4.2(b) (iv)	 (iv) For concrete grade not exceeding C60, the calculated standard deviation exceeds 8 MPa for 150 mm test cubes or 8.5 MPa for 100 mm test cubes; or 	(iv) For concrete grade not exceeding C60, the calculated standard deviation exceeds 8.5 MPa (8 MPa for 150 mm cubes); or
11. Clause 10.3.4.2(b) (vi)	 (vi) The average of the latest 40 cube test results exceeds the grade strength by at least 10 MPa for 150 mm test cubes or 12 MPa for 100 mm test cubes and all individual test results exceeds the grade strength by at least 4 MPa for 150 mm test cubes or 5 MPa for 100 mm test cubes; or 	 (vi) The average of the latest 40 cube test results exceeds the grade strength by at least 12 MPa (10 MPa for 150 mm cubes) and all individual test results exceeds the grade strength by at least 5 MPa (4 MPa for 150 mm cubes); or
12. Clause 11.7.5.4 and Table 11.2		11.7.5.4 Monitoring early compressive strength of insitu concrete by maturity method After concrete casting, the development of insitu concrete compressive strength at early age can be monitored by the maturity method. The maturity method can be used for estimating insitu concrete compressive strength through measurement of the temperature-time history of concrete of ages up to 14 days after casting, for the purpose of determining the concrete strength for striking of formwork and falsework ¹ in lieu of the minimum periods specified in clause 10.3.8.2. In formulating a proposal adopting the maturity method, reference should be made to the acceptable standard in Annex A. The proposal should cover the following:

Item	Current version	A	mendments	
		(a) choice of an appropriate maturity function consta		nd determination of
		(b) apparatuses and their cal	ibration;	
		(c) procedure for developing	g strength-maturity	relationship;
		(d) procedure for estimating	insitu concrete stre	ength;
		(e) validation of insitu conc	rete strength;	
		(f) re-calibration and re-val	dation; and	
		(g) quality assurance and su	pervision.	
		The concrete mix used in the used to derive the strength-n		
		Taking into account the di concrete and concrete cubes the calibration process, a co should be applied to the e strength.	under various cur rrection factor as s	ing temperatures in hown in Table 11.2
		Type of concrete mix	<mark>≤ 48 hours</mark> after concrete casting	> 48 hours after concrete casting
		Concrete mix containing pfa or ggbs	0.7	0.8
		Other concrete mix	<mark>0.8</mark>	0.8
		Table 11.2 – Correction factor concrete compressive stren		ne estimated insitu

Item	Current version	Amendments
		1 Due to the rapid rate of concrete strength development within 24 hours after concrete casting, the maturity method is not suitable for use in justifying minimum periods before striking formwork and falsework of less than 24 hours.
13. Annex A ³	BS EN 13263-1:2005 Silica fume for concrete +A1:2009 Definitions, requirements an conformity criteria	
		ASTM C1074-19 ^{ɛ1} Standard Practice for Estimating Concrete Strength by the Maturity Method

³ Addition of ASTM C1074-19^{ϵ 1} corresponding to the new clause 11.7.5.4.

Appendix B (PNAP APP-142)

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition)

(June 2023)

(6/2023)

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition) in June 2023 included:

- (a) Clause 3.2.8.3 and Annex A Addition of referenced standard ISO 15835-2 for the test method on mechanical coupler; and
- (b) Clause 9.9.1.3(b) and Figure 9.6a Addition of alternative arrangement for links/ties for beam.

Item	Current version	Amendments
1. List of Figures	Figure 9.6 - Typical corbel detailing Figure 9.7 - Typical confinement in beam	 Figure 9.6 - Typical corbel detailing Figure 9.6a - Alternative arrangement for links/ties for beam Figure 9.7 - Typical confinement in beam
2. Clause 3.2.8.3 ¹	 3.2.8.3 Performance of type 1 mechanical couplers Type 1 mechanical coupler satisfying the following criteria may be used as an alternative to tension or compression laps: (a) when a representative gauge length assembly comprising reinforcement of the diameter, grade and profile to be used, and a coupler of the precise type to be used, is tested in tension the permanent elongation after loading to 0.6fy should not exceed 0.1 mm; and 	 criteria may be used as an alternative to tension or compression laps: (a) when a representative gauge length assembly comprising reinforcement of the diameter, grade and profile to be used, and a coupler of the precise type to be used, is tested in tension the permanent
3. Clause 9.9.1.3(b) ²	 (b) Anchorage Links should be adequately anchored by means of hooks with bend not less than 135° in accordance with clause 8.5. Anchorage by means of welded cross bars is not permitted. Where 	 (b) Anchorage Links should be adequately anchored by means of hooks with bend not less than 135° in accordance with clause 8.5. Alternatively, links/ties should be adequately anchored by means of hooks bent through an angle of not less than 135° at one end and 90° at the other end, and should be alternated end for end along the longitudinal bars (see Figure 9.6a). Anchorage by means of welded cross bars is not permitted. Where

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition)

Addition of referenced standard ISO 15835-2 for the test method on mechanical coupler.
 Addition of alternative arrangement for links/ties for beam.

Item		Current version		Amendments
4. Figure 9.6a			Links/ties with al end along the long Figure 9.6a - Alter	
5. Annex A	AC 133:2008 BS EN 197-1:2011	Acceptance Criteria for Mechanical Connector Systems for Steel Reinforcing Bars Cement. Composition, specifications and conformity criteria for common	AC 133:2008 ISO 15835-2:2018	Acceptance Criteria for Mechanical Connector Systems for Steel Reinforcing Bars Steels for the reinforcement of concrete – Reinforcement couplers for mechanical
		cements	BS EN 197-1:2011	splices of bars – Part 2: Test methods Cement. Composition, specifications and conformity criteria for common cements

Appendix C (PNAP APP-142)

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition) (April 2024)

(4/2024)

- 1 -

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition) in April 2024 included:

- (a) Clause 3.2.8.3 and Figure 3.9a addition of maximum allowable permanent elongation for mechanical couplers longer than 100 mm;
- (b) Clauses 6.1.2.1, clause 6.9 and Figures 6.21 to 6.25 addition of provisions for strut-and-tie system;
- (c) Figure 9.5(g), (h) and (i) addition of column transverse reinforcement details;
- (d) Clause 11.7.1 addition of mix proportion for concrete of strength not exceeding 20 N/mm² for minor structural and non-structural works and clarification of the limitation on the volume of concrete for exceptional project;
- (e) Equation 12.2 rectification of typo in equation; and
- (f) Annex A update of version of standard BS 8500 Parts 1 & 2 and addition of standard BS EN 206:2013.

Item	Current version	Amendments
1. Contents	6.8 BEAM-COLUMN JOINTS 6.8.1 General principles and requirements	 6.8 BEAM-COLUMN JOINTS 6.8.1 General principles and requirements 6.9 STRUT-AND-TIE SYSTEM 6.9.1 General 6.9.2 Modelling and analysis 6.9.3 Design
2. List of Tables	Table 11.1- Objects of production and construction controlTable 11.2- Correction factor applied to the estimated insitu concrete compressive strength	Table 11.1Objects of production and construction controlTable 11.1aMix proportions for concrete for minor structural and non-structural worksTable 11.2- Correction factor applied to the estimated insitu concrete compressive strength
3. List of Figures	 Figure 3.9 - Short-term design stress-strain curve for reinforcement Figure 3.10 - Short-term design stress-strain curve for prestressing tendons 	 Figure 3.9 - Short-term design stress-strain curve for reinforcement Figure 3.9a - Maximum allowable permanent elongation for type 1 mechanical couplers Figure 3.10 - Short-term design stress-strain curve for prestressing tendons
4. List of Figures	Figure 6.20 - Effective joint widths Figure 7.1 - Assumptions made in calculating curvatures	 Figure 6.20 - Effective joint widths Figure 6.21 - Nodal condition Figure 6.22 - Static equilibrium of a strut-and-tie model Figure 6.23 - Load distribution area and loaded area for determining the confinement modification factor Figure 6.24 - Classification of nodes Figure 6.25 - Anchorage of tie reinforcements Figure 7.1 - Assumptions made in calculating curvatures

Amendments to the Code of Practice for Structural Use of Concrete 2013 (2020 Edition)

Item	Current version	Amendments
5. Clause 1.5	1.5 SYMBOLS F design ultimate load (e.g. $1.4G_k + 1.6Q_k$) f_{cu} characteristic compressive strength of concrete	1.5SYMBOLS F design ultimate load (e.g. $1.4G_k + 1.6Q_k$) F_{tie} design resistance of non-prestressed ties f_{cb} design ultimate bearing strength based on the weakerof the two bearing surfaces f_{ce} design compressive strength of the concrete in a strutor a nodal zone f_{cu} characteristic compressive strength of concrete
6. Clause 3.2.8.3 ¹	 3.2.8.3 Performance of type 1 mechanical couplers Type 1 mechanical coupler satisfying the following criteria may be used as an alternative to tension or compression laps: (a) when a representative gauge length assembly comprising reinforcement of the diameter, grade and profile to be used, and a coupler of the precise type to be used, is tested in tension the permanent elongation after loading to 0.6<i>fy</i> should not exceed 0.1 mm¹; and 	 criteria may be used as an alternative to tension or compression laps: (a) when a representative gauge length assembly comprising reinforcement of the diameter, grade and profile to be used, and a coupler of the precise type to be used, is tested in tension the permanent

¹ Addition of maximum allowable permanent elongation for mechanical couplers longer than 100 mm. - 4 -

Item	Current version	Amendments			
		Y 0,30 0,25 0,20 0,15 0,10 0,05 0 0 50 100 150 200 250 300 350 400 X Key X length of the mechanical coupler, in mm Y permanent elongation after loading to 0.6 <i>fy</i> , in mm Figure 3.9a – Maximum allowable permanent elongation for type 1 mechanical couplers			
7. Clause 6.1.2.1	 6.1.2.1 General (a) Design limitations This sub-clause deals with the design of beams of normal proportions. Deep beams (see clause 5.2.1.1(a)) are not considered. For the design of deep beams, reference should be made to specialist literature. 	 6.1.2.1 General (a) Design limitations This sub-clause deals with the design of beams of normal proportions. Deep beams (see clause 5.2.1.1(a)) are not considered. For the design of deep beams, reference should be made to specialist literature or strut-and-tie system in clause 6.9. 			
8. Clause 6.9 ²		 6.9 STRUT-AND-TIE SYSTEM 6.9.1 General Non-flexural components, e.g. locations near supports and concentrated loads, of reinforced concrete structures can be 			

² Additional of provisions for strut-and-tie system.

Item	Current version	Amendments
		designed using strut-and-tie model. A strut-and-tie model is an idealized pin-jointed truss, comprising concrete compression struts, reinforcement tension ties, and concrete nodes.
		 6.9.2 Modelling and analysis The angle between the axis of a strut and the axis of a tie (θ) shall not be less than 25° nor exceed 60°. The boundary forces and the internal forces can be determined based on the static equilibrium and the truss analysis.
		The dimensions of nodes shall be determined based on the nodal condition shown in Figure 6.21 by using the static equilibrium corresponding to shear failure and plastic stress state (see Figure 6.22).
		Fs (the provided by the provi
		$F_{s} = \sqrt{F_{1}^{2} + F_{2}^{2}}$ $F_{s} = \sqrt{F_{1}^{2} + F_{2}^{2}}$ $I_{s} = l_{1} \cos \theta + l_{2} \sin \theta$ $\sigma_{s} = F_{s}/(l_{s} \times \text{breadth})$ Figure 6.21 – Nodal condition

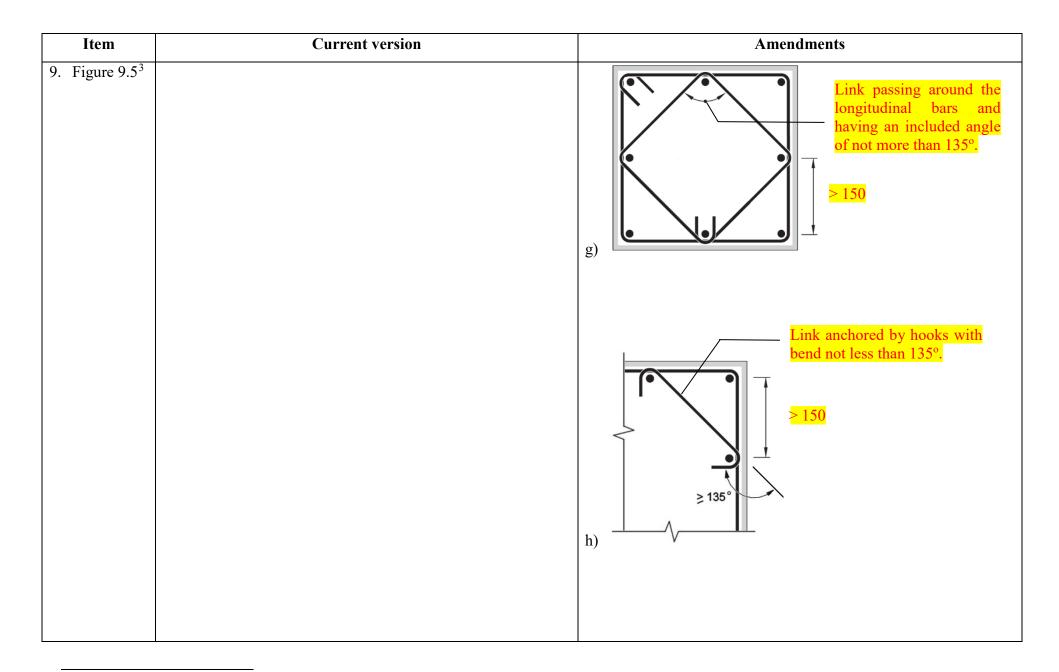

Item	Current version	Amendments
		h_{ccc}
		 6.9.3 Design 6.9.3.1 Design compressive strength of strut Design compressive strength of concrete in strut <i>f</i>_{ce} should be calculated from:
		$f_{\rm ce} = 0.32 \mathrm{m} f_{\rm cu} \qquad 6.74$
		where m is the confinement modification factor taken as $\sqrt{\frac{A_2}{A_1}} \le 2$, A ₁ is loaded area, A ₂ is load distribution area (see Figure 6.23).

Image: space of the systemImage: space of the systemImage	Item	Current version	Amendments				
			Figure 6.23 – Load distribution area and loaded area, A_1 I_{1} I_{2} I_{2} I_{3} $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ $I_{45^{\circ}}$ I_{1} $I_$				

Item	Current version	Amendments
		C $f_{cb} = 0.27mf_{cu}$ for dry bearing on concrete for contact face of a steel bearing for dry with each dimension not exceeding 40% of the corresponding concrete dimension.6.78 6.78 6.80
		 An intermediate value of bearing stress between dry and bedded bearings may be used for flexible bedding. 6.9.3.4 <i>Ties</i> (a) Design resistance of ties Design resistance of non-prestressed ties shall be calculated as follows:
		$F_{\text{tie}} = 0.87 f_y A_s \tag{6.81}$

Item	Current version	Amendments
		(b) Arrangement of ties The reinforcing bars in a tie shall be evenly distributed across the nodal depth such that the centroid axis of the reinforcing bars coincides with the axis of the tie in the strut-and-tie model.
		 (c) Anchorage of ties The reinforcing bars in a tie shall be properly anchored to transfer the tension force into the node through adequate anchorage of longitudinal reinforcement in accordance with clause 8.4. The anchorage begins at the location where the edge of strut meets the bearing surface (see Figure 6.25). For straight bars, they shall be extended beyond the node.

Item	Current version	Amendments				
		Nodal Steel reinforcement Nodal Steel reinforcement depth Bearing Surface Surface Figure 6.25 – Anchorage of tie reinforcements 6.9.3.5 Minimum reinforcement An orthogonal grid of reinforcing bars shall be placed evenly across each face of the section. The minimum percentage of reinforcement is 0.25%.				

³ Addition of column transverse reinforcement details.

Item	Current version	Amendments		
		Link should be adequately anchored by means of hooks bent through an angle of not less than 135°		
		i)		
		Figure 9.5 – Column transverse reinforcement		
10. Clause 9.9.2.2(c) ⁴	 (c) Anchorage Links and ties should be adequately anchored by means of hooks with bend not less than 135° in accordance with clause 9.5.2 (see Figure 9.5b, c, d & e). Where 	(c) Anchorage Links and ties should be adequately anchored by means of hooks with bend not less than 135° in accordance with clause 9.5.2 (see Figure 9.5b, c, d, e, g, h & i). Where		
11. Clause 11.7.1 ⁵	Structural concrete for all works should be obtained from concrete suppliers who are certified under the Quality Scheme for the Production and Supply of Concrete (QSPSC) or similar equivalent, except for those located at remote areas (such as	Structural concrete should be obtained from concrete suppliers who are certified under the Quality Scheme for the Production and Supply of Concrete (QSPSC) or similar equivalent, except for those located at remote areas (such as outlying islands) or where the total		

 ⁴ Addition of Figures 9.5(g), (h) and (i)
 ⁵ Addition of mix proportions for concrete of strength not exceeding 20N/mm² for minor structural and non-structural works and clarification of the limitation on the volume of concrete for exceptional project.

Item	Current version	Amendments					
	outlying islands) or where the volume of concrete involved is less than 50 m ³ . Even for these "exceptional" projects, the structural concrete should be obtained from a supplier operating an approved quality system.	volume of concrete per building project involved is less than 50 m ³ . Even for these "exceptional" projects, the structural concrete should be obtained from a supplier operating an approved quality system. Concrete with strength not exceeding 20 N/mm ² may be made using mix proportions, batching by weight, selected from Table 11.1a for minor structural and non-structural works such as on-grade slabs, blinding layer, U-channels/stepped channels, bedding and haunching for pipe works, concrete footings for posts and fences, and mass concrete fill which does not sustain appreciable loading.					
		Concrete Strength	Material	Weight of per bag o k 45 kg bag of cement	f aggregate of cement g 50 kg bag of cement	Maximum free water/ cement ratio	
		10 N/mm ²	Fine aggregate 20 mm coarse aggregate	145 185	160 205	_	
		15 N/mm ²	Fine aggregate 20 mm coarse	120 165	130 180	- <mark>0.65</mark>	
		20 N/mm ²	aggregate Fine aggregate	95	105		
			20 mm coarse aggregate ent shall be ordin	145 nary Portland	160 cement.		

Item	Current version			Amendments			
					proportions for concrete for minor st and non-structural works	ructural	
12. Equation 12.2 ⁶	$f_{pb} = f_{pe} + \frac{70000\lambda_1}{l/d}$	$-\left(1-0.7\lambda_2\frac{f_{pu}A_{ps}}{f_{cu}bd}\right)$	12.2	$f_{pb} = f_{pe} + \frac{7000 \lambda_1}{l/d}$	$\left(1 - 0.7\lambda_2 \frac{f_{pu}A_{ps}}{f_{cu}bd}\right)$	12.2	
13. Annex A	BS 8500-1:2006	Concrete. Complementary Standard to BS EN 206-1. Me specifying and guidance f specifier		BS 8500-1:20 <mark>15</mark>	Concrete. Complementary E Standard to BS EN 206-1. Meth specifying and guidance for specifier		
	BS 8500-2:2006	Concrete. Complementary Standard to BS EN Specification for constituent m and concrete	British 206-1. naterials	BS 8500-2:20 <mark>15</mark>	1 5	British 206-1. erials	
				BS EN 206:2013	Concrete – Specification, perform production and conformity	ance,	

⁶ Rectification of typo in equation.